
Geometry: Combinatorics & Algorithms
Lecture Notes HS 2018

Luis Barba <luis.barba@inf.ethz.ch>
Bernd Gärtner <gaertner@inf.ethz.ch>

Michael Hoffmann <hoffmann@inf.ethz.ch>
Emo Welzl <emo@inf.ethz.ch>

August 2019

Preface

These lecture notes are designed to accompany a course on “Geometry: Combinatorics &
Algorithms” that we teach at the Department of Computer Science, ETH Zürich, since
2005. The topics that are covered have changed over the years, as has the name of
the course. The current version is a synthesis of topics from computational geometry,
combinatorial geometry, and graph drawing that are centered around triangulations, that
is, geometric representations of maximal plane graphs. The selection of topics is guided
by the following criteria.

Importance. What are the most essential concepts and techniques that we want our stu-
dents to know? (for instance, if they plan to write a thesis in the area)

Overlap. What is covered and to which extent in other courses of our curriculum?

Coherence. How closely related is something to the focal topic of triangulations and how
well does it fit with the other topics selected?

Our main focus is on low-dimensional Euclidean space (mostly 2D), although we
sometimes discuss possible extensions and/or remarkable differences when going to higher
dimensions. At the end of each chapter there is a list of questions that we expect our
students to be able to answer in the oral exam.

In the current setting, the course runs over 14 weeks, with two hours of lecture and
two hours of exercises each week. In addition, there are three sets of graded homeworks
which students have to hand in spread over the course. The target audience are third-year
Bachelor or Master students of Mathematics or Computer Science.

This year’s course covers the material presented in Chapters 1–10. The appendix
A–H contains material that appeared in previous editions of the course.

Most parts of these notes have been gone through several iterations of proofreading
over the years. But experience tells that there are always a few mistakes that escape
detection. So in case you notice some problem, please let us know, regardless of whether
it is a minor typo or punctuation error, a glitch in formulation, or a hole in an argument.
This way the issue can be fixed for the next edition and future readers profit from your
findings.

We thank Luis Barba, Kateřina Böhmová, Sergio Cabello, Tobias Christ, Cyril Frei,
Anna Gundert, Tillmann Miltzow, Gabriel Nivasch, Johannes Obenaus, Júlia Pap, Kalina
Petrova, Alexander Pilz, Patrick Schnider, Marek Sulovský, May Szedlák, Hemant Tyagi
and Alexandra Wesolek for their helpful comments.

Bernd Gärtner, Michael Hoffmann, and Emo Welzl
Department of Computer Science, ETH Zürich

Universitätstrasse 6, CH-8092 Zürich, Switzerland
E-mail address: {gaertner,hoffmann,emo}@inf.ethz.ch

Contents

1 Fundamentals 8
1.1 Models of Computation . 8
1.2 Basic Geometric Objects . 10
1.3 Graphs . 11

2 Plane Embeddings 15
2.1 Drawings, Embeddings and Planarity . 15
2.2 Graph Representations . 21

2.2.1 The Doubly-Connected Edge List 22
2.2.2 Manipulating a DCEL . 23
2.2.3 Graphs with Unbounded Edges . 26
2.2.4 Combinatorial Embeddings . 27

2.3 Unique Embeddings . 29
2.4 Triangulating a Plane Graph . 32
2.5 Compact Straight-Line Drawings . 35

2.5.1 Canonical Orderings . 36
2.5.2 The Shift-Algorithm . 40
2.5.3 Remarks and Open Problems . 45

3 Polygons 50
3.1 Classes of Polygons . 50
3.2 Polygon Triangulation . 52
3.3 The Art Gallery Problem . 58
3.4 Optimal Guarding . 59

4 Convex Hull 64
4.1 Convexity . 65
4.2 Classic Theorems for Convex Sets . 67
4.3 Planar Convex Hull . 70
4.4 Trivial algorithms . 72
4.5 Jarvis’ Wrap . 72
4.6 Graham Scan (Successive Local Repair) 75
4.7 Lower Bound . 76

4

Geometry: C&A 2019 Contents

4.8 Chan’s Algorithm . 77

5 Delaunay Triangulations 80
5.1 The Empty Circle Property . 83
5.2 The Lawson Flip algorithm . 85
5.3 Termination of the Lawson Flip Algorithm: The Lifting Map 86
5.4 Correctness of the Lawson Flip Algorithm 87
5.5 The Delaunay Graph . 89
5.6 Every Delaunay Triangulation Maximizes the Smallest Angle 90
5.7 Constrained Triangulations . 94

6 Delaunay Triangulation: Incremental Construction 97
6.1 Incremental construction . 97
6.2 The History Graph . 99
6.3 Analysis of the algorithm . 102

7 Voronoi Diagrams 107
7.1 Post Office Problem . 107
7.2 Voronoi Diagram . 109
7.3 Duality . 112
7.4 Lifting Map . 113
7.5 Planar Point Location . 114
7.6 Kirkpatrick’s Hierarchy . 115

8 Line Arrangements 120
8.1 Arrangements . 121
8.2 Construction . 123
8.3 Zone Theorem . 123
8.4 The Power of Duality . 125
8.5 Rotation Systems—Sorting all Angular Sequences 127
8.6 Segment Endpoint Visibility Graphs . 128
8.7 3-Sum . 130
8.8 Ham Sandwich Theorem . 133
8.9 Constructing Ham Sandwich Cuts in the Plane 134
8.10 Davenport-Schinzel Sequences . 138
8.11 Constructing lower envelopes . 143
8.12 Complexity of a single face . 144

9 Counting 149
9.1 Introduction . 150
9.2 Embracing k-Sets in the Plane . 150

9.2.1 Adding a Dimension . 152
9.2.2 The Upper Bound . 154

5

Contents Geometry: C&A 2019

9.2.3 Faster Counting—Another Vector 156
9.2.4 Characterizing All Possibilities . 157
9.2.5 Some Add-Ons . 159

10 Crossings 162

A Line Sweep 167
A.1 Interval Intersections . 168
A.2 Segment Intersections . 168
A.3 Improvements . 172
A.4 Algebraic degree of geometric primitives 172
A.5 Red-Blue Intersections . 175

B The Configuration Space Framework 181
B.1 The Delaunay triangulation — an abstract view 181
B.2 Configuration Spaces . 182
B.3 Expected structural change . 183
B.4 Bounding location costs by conflict counting 185
B.5 Expected number of conflicts . 186

C Trapezoidal Maps 191
C.1 The Trapezoidal Map . 191
C.2 Applications of trapezoidal maps . 192
C.3 Incremental Construction of the Trapezoidal Map 192
C.4 Using trapezoidal maps for point location 196
C.5 Analysis of the incremental construction 196

C.5.1 Defining The Right Configurations 196
C.5.2 Update Cost . 198
C.5.3 The History Graph . 199
C.5.4 Cost of the Find step . 199
C.5.5 Applying the General Bounds . 200

C.6 Analysis of the point location . 202
C.7 The trapezoidal map of a simple polygon 203

D Translational Motion Planning 210
D.1 Complexity of Minkowski sums . 211
D.2 Minkowski sum of two convex polygons 213
D.3 Constructing a single face . 213

E Linear Programming 217
E.1 Linear Separability of Point Sets . 217
E.2 Linear Programming . 218
E.3 Minimum-area Enclosing Annulus . 221
E.4 Solving a Linear Program . 222

6

Geometry: C&A 2019 Contents

F A randomized Algorithm for Linear Programming 224
F.1 Helly’s Theorem . 225
F.2 Convexity, once more . 226
F.3 The Algorithm . 227
F.4 Runtime Analysis . 228

F.4.1 Violation Tests . 229
F.4.2 Basis Computations . 230
F.4.3 The Overall Bound . 230

G Smallest Enclosing Balls 232
G.1 The trivial algorithm . 235
G.2 Welzl’s Algorithm . 236
G.3 The Swiss Algorithm . 239
G.4 The Forever Swiss Algorithm . 240
G.5 Smallest Enclosing Balls in the Manhattan Distance 244

H Epsilon Nets 247
H.1 Motivation . 247
H.2 Range spaces and ε-nets. 248
H.3 Either almost all is needed or a constant suffices. 250
H.4 What makes the difference: VC-dimension 251
H.5 VC-dimension of Geometric Range Spaces 254
H.6 Small ε-Nets, an Easy Warm-up Version 256
H.7 Even Smaller ε-Nets . 257

7

Chapter 1

Fundamentals

1.1 Models of Computation

When designing algorithms, one has to agree on a model of computation according to
which these algorithms can be executed. There are various such models, but when it
comes to geometry some are more convenient to work with than others. Even using
very elementary geometric operations—such as taking the center of a circle defined by
three points or computing the length of a given circular arc—the realms of rational
and even algebraic numbers are quickly left behind. Representing the resulting real
numbers/coordinates would be a rather painful task in, for instance, a Turing machine
type model of computation.

Therefore, other models of computation are more prominent in the area of geometric
algorithms and data structures. In this course we will be mostly concerned with two
models: the Real RAM and the algebraic computation/decision tree model. The
former is rather convenient when designing algorithms, because it sort of abstracts from
the aforementioned representation issues by simply assuming that it can be done. The
latter model typically appears in the context of lower bounds, that is, proofs that certain
problems cannot be solved more efficiently than some function depending on the problem
size (and possibly some other parameters).

So let us see what these models are in more detail.

Real RAM Model. A memory cell stores a real number (that is what the “Real” stands
for)1. Any single arithmetic operation (addition, subtraction, multiplication, division,
and k-th root, for small constant k) or comparison can be computed in constant time.2

This is a quite powerful (and somewhat unrealistic) model of computation, as a single
real number in principle can encode an arbitrary amount of information. Therefore we

1RAM stands for random access machine, meaning that every memory cell can be accessed in constant
time. Not like, say, a list where one always has to start from the first element.

2In addition, sometimes also logarithms, other analytic functions, indirect addressing (integral), or floor
and ceiling are used. As adding some of these operations makes the model more powerful, it is usually
specified and emphasized explicitly when an algorithm uses them.

8

Geometry: C&A 2019 1.1. Models of Computation

have to ensure that we do not abuse the power of this model. For instance, we may want
to restrict the numbers that are manipulated by any single arithmetic operation to be
bounded by some fixed polynomial in the numbers that appear in the input.

On the positive side, the real RAM model allows to abstract from the lowlands of
numeric and algebraic computation and to concentrate on the algorithmic core from a
combinatorial point of view.

But there are also downsides to using such a powerful model. In particular, it may
be a challenge to efficiently implement a geometric algorithm designed for the real RAM
on an actual computer. With bounded memory there is no way to represent general
real numbers explicitly, and operations using a symbolic representation can hardly be
considered constant time.

When interested in lower bounds, it is convenient to use a model of computation that
encompasses and represents explicitly all possible execution paths of an algorithm. This
is what the following model is about.

Algebraic Computation Trees (Ben-Or [1]). A computation is regarded as a binary tree.

≤ 0

a− b

b− ca− c

≤ 0 ≤ 0

a c b c

� The leaves contain the (possible) results of the compu-
tation.

� Every node v with one child has an operation of the
form +,−, ∗, /,√, . . . associated to it. The operands of
this operation are constant input values, or among the
ancestors of v in the tree.

� Every node v with two children has associated to it a
branching of the form > 0, > 0, or = 0. The branch
is with respect to the result of v’s parent node. If the
expression yields true, the computation continues with
the left child of v; otherwise, it continues with the right
child of v.

The term decision tree is used if all of the final results (leaves) are either true or
false. If every branch is based on a linear function in the input values, we face a linear
decision tree. Analogously one can define, say, quadratic decision trees.

The complexity of a computation or decision tree is the maximum number of vertices
along any root-to-leaf path. It is well known that Ω(n logn) comparisons are required
to sort n numbers. But also for some problems that appear easier than sorting at first
glance, the same lower bound holds. Consider, for instance, the following problem.

Element Uniqueness

Input: {x1, . . . , xn} ⊂ R, n ∈ N.

Output: Is xi = xj, for some i, j ∈ {1, . . . , n} with i 6= j?

9

Chapter 1. Fundamentals Geometry: C&A 2019

Ben-Or [1] has shown that any algebraic decision tree to solve Element Uniqueness
for n elements has complexity Ω(n logn).

1.2 Basic Geometric Objects

We will mostly be concerned with the d-dimensional Euclidean space Rd, for small
d ∈ N; typically, d = 2 or d = 3. The basic objects of interest in Rd are the following.

Points. A point p, typically described by its d Cartesian
coordinates p = (x1, . . . , xd).

p = (−4, 0)

q = (2,−2)

r = (7, 1)

Directions. A vector v ∈ Sd−1 (the (d − 1)-dimensional
unit sphere), typically described by its d Cartesian coor-

dinates v = (x1, . . . , xd), with ||v|| =
√∑d

i=1 xi
2 = 1.

Lines. A line is a one-dimensional affine subspace. It can
be described by two distinct points p and q as the set of
all points r that satisfy r = p+ λ(q− p), for some λ ∈ R.

p

q

While any pair of distinct points defines a unique line, a line in R2 contains infinitely
many points and so it may happen that a collection of three or more points lie on a line.
Such a collection of points is termed collinear 3.

Rays. If we remove a single point from a line and take
the closure of one of the connected components, then we
obtain a ray. It can be described by two distinct points p
and q as the set of all points r that satisfy r = p+λ(q−p),
for some λ > 0. The orientation of a ray is the direction
(q− p)/‖q− p‖.

p

q

Line segment. A line segment is a compact connected sub-
set of a line. It can be described by two points p and q
as the set of all points r that satisfy r = p+ λ(q− p), for
some λ ∈ [0, 1]. We will denote the line segment through
p and q by pq. Depending on the context we may allow
or disallow degenerate line segments consisting of a single
point only (p = q in the above equation).

p

q

Hyperplanes. A hyperplaneH is a (d−1)-dimensional affine subspace. It can be described
algebraically by d + 1 coefficients λ1, . . . , λd+1 ∈ R, where ‖(λ1, . . . , λd+1)‖ = 1, as the
set of all points (x1, . . . , xd) that satisfy the linear equation H :

∑d
i=1 λixi = λd+1.

3Not colinear, which refers to a notion in the theory of coalgebras.

10

Geometry: C&A 2019 1.3. Graphs

If the above equation is converted into an inequality, we obtain the algebraic descrip-
tion of a halfspace (in R2: halfplane).

Spheres and balls. A sphere is the set of all points that are equidistant to a fixed point.
It can be described by a point c (center) and a number ρ ∈ R (radius) as the set of all
points p that satisfy ||p − c|| = ρ. The ball of radius ρ around p consists of all points p
that satisfy ||p− c|| 6 ρ.

1.3 Graphs

In this section we review some basic definitions and properties of graphs. For more
details and proofs, refer to any standard textbook on graph theory [2, 3, 5].

An (undirected) graph G = (V, E) is defined on a set V of vertices. Unless explicitly
stated otherwise, V is always finite. Vertices are associated to each other through edges
which are collected in the set E ⊆

(
V
2

)
. The two vertices defining an edge are adjacent

to each other and incident to the edge.
For a vertex v ∈ V, denote by NG(v) the neighborhood of v in G, that is, the set

of vertices from G that are adjacent to v. Similarly, for a set W ⊂ V of vertices define
NG(W) :=

⋃
w∈W NG(w). The degree degG(v) of a vertex v ∈ V is the size of its

neighborhood, that is, the number of edges from E incident to v. The subscript is often
omitted when it is clear which graph it refers to.

Lemma 1.1 (Handshaking Lemma). In any graph G = (V, E) we have
∑
v∈V deg(v) =

2|E|.

Two graphs G = (V, E) and H = (U,W) are isomorphic if there is a bijection φ :
V → U such that {u, v} ∈ E ⇐⇒ {φ(u), φ(v)} ∈ W. Such a bijection φ is called an
isomorphism between G and H. The structure of isomorphic graphs is identical and
often we do not distinguish between them when looking at them as graphs.

For a graph G denote by V(G) the set of vertices and by E(G) the set of edges. A
graph H = (U, F) is a subgraph of G if U ⊆ V and F ⊆ E. In case that U = V the graph
H is a spanning subgraph of G. For a setW ⊆ V of vertices denote by G[W] the induced
subgraph of W in G, that is, the graph (W,E ∩

(
W
2

)
). For F ⊆ E let G \ F := (V, E \ F).

Similarly, forW ⊆ V let G\W := G[V \W]. In particular, for a vertex or edge x ∈ V ∪ E
we write G \ x for G \ {x}. The union of two graphs G = (V, E) and H = (W,F) is the
graph G ∪ H := (V ∪ W,E ∪ F).

For an edge e = {u, v} ∈ E the graph G/e is obtained from G \ {u, v} by adding a new
vertex w with NG/e(w) := (NG(u) ∪NG(v)) \ {u, v}. This process is called contraction
of e in G. Similarly, for a set F ⊆ E of edges the graph G/F is obtained from G by
contracting all edges from F (the order in which the edges from F are contracted does
not matter).

11

Chapter 1. Fundamentals Geometry: C&A 2019

Graph traversals. A walk in G is a sequence W = (v1, . . . , vk), k ∈ N, of vertices such
that vi and vi+1 are adjacent in G, for all 1 6 i < k. The vertices v1 and vk are referred
to as the walk’s endpoints, the other vertices are called interior. A walk with endpoints
v1 and vk is sometimes referred to as a walk between v1 and vk. For a walk W denote
by V(W) its set of vertices and by E(W) its set of edges (pairs of vertices adjacent along
W). We say that W visits the vertices and edges in V(W) ∪ E(W). A walk for which
both endpoints coincide, that is, v1 = vk, is called closed. Otherwise the walk is open.

If a walk uses each edge of G at most once, it is a trail. A closed walk that visits each
edge and each vertex at least once is called a tour of G. An Euler tour is both a trail
and a tour of G, that is, it visits each edge of G exactly once. A graph that contains an
Euler tour is termed Eulerian.

If the vertices v1, . . . , vk of a closed walk W are pairwise distinct except for v1 = vk,
then W is a cycle of size k − 1. If the vertices v1, . . . , vk of a walk W are pairwise
distinct, then W is a path of size k. A Hamilton cycle (path) is a cycle (path) that
visits every vertex of G. A graph that contains a Hamilton cycle is Hamiltonian.

Two trails are edge-disjoint if they do not share any edge. Two paths are called
(internally) vertex-disjoint if they do not share any vertices (except for possibly common
endpoints). For two vertices s, t ∈ V any path with endpoints s and t is called an (s, t)-
path or a path between s and t.

Connectivity. Define an equivalence relation “∼” on V by setting a ∼ b if and only if
there is a path between a and b in G. The equivalence classes with respect to “∼” are
called components of G and their number is denoted by ω(G). A graph G is connected
if ω(G) = 1 and disconnected, otherwise.

A set C ⊂ V of vertices in a connected graph G = (V, E) is a cut-set of G if G \ C is
disconnected. A graph is k-connected, for a positive integer k, if |V | > k + 1 and there
is no cut-set of size less than k. Similarly a graph G = (V, E) is k-edge-connected, if
G \ F is connected, for any set F ⊆ E of less than k edges. Connectivity and cut-sets are
related via the following well-known theorem.

Theorem 1.2 (Menger [4]). For any two nonadjacent vertices u, v of a graph G = (V, E),
the size of a minimum cut that disconnects u and v is the same as the maximum
number of pairwise internally vertex-disjoint paths between u and v.

Specific families of graphs. A graph with a maximum number of edges, that is, (V,
(
V
2

)
), is

called a clique. Up to isomorphism there is only one clique on n vertices; it is referred to
as the complete graph Kn, n ∈ N. At the other extreme, the empty graph Kn consists
of n isolated vertices that are not connected by any edge. A set U of vertices in a graph G
is independent if G[U] is an empty graph. A graph whose vertex set can be partitioned
into at most two independent sets is bipartite. An equivalent characterization states
that a graph is bipartite if and only if it does not contain any odd cycle. The bipartite
graphs with a maximum number of edges (unique up to isomorphism) are the complete

12

Geometry: C&A 2019 1.3. Graphs

bipartite graphs Km,n, for m,n ∈ N. They consist of two disjoint independent sets of
size m and n, respectively, and all mn edges in between.

A forest is a graph that is acyclic, that is, it does not contain any cycle. A connected
forest is called tree and its leaves are the vertices of degree one. Every connected graph
contains a spanning subgraph which is a tree, a so called spanning tree. Beyond the
definition given above, there are several equivalent characterizations of trees.

Theorem 1.3. The following statements for a graph G are equivalent.

(1) G is a tree (i.e., it is connected and acyclic).

(2) G is a connected graph with n vertices and n− 1 edges.

(3) G is an acyclic graph with n vertices and n− 1 edges.

(4) Any two vertices in G are connected by a unique path.

(5) G is minimally (edge-)connected, that is, G is connected but removal of any
single edge yields a disconnected graph.

(6) G is maximally acyclic, that is, G is acyclic but adding any single edge creates
a cycle.

Directed graphs. In a directed graph or, short, digraph D = (V, E) the set E consists of
ordered pairs of vertices, that is, E ⊆ V2. The elements of E are referred to as arcs. An
arc (u, v) ∈ E is said to be directed from its source u to its target v. For (u, v) ∈ E we
also say “there is an arc from u to v in D”. Usually, we consider loop-free graphs, that
is, arcs of the type (v, v), for some v ∈ V, are not allowed.

The in-degree deg−D(v) := |{(u, v) | (u, v) ∈ E}| of a vertex v ∈ V is the number of
incoming arcs at v. Similarly, the out-degree deg+D(v) := |{(v, u) | (v, u) ∈ E}| of a vertex
v ∈ V is the number of outgoing arcs at v. Again the subscript is often omitted when
the graph under consideration is clear from the context.

From any undirected graph G one can obtain a digraph on the same vertex set by
specifying a direction for each edge of G. Each of these 2|E(G)| different digraphs is called
an orientation of G. Similarly every digraph D = (V, E) has an underlying undirected
graph G = (V, { {u, v} | (u, v) ∈ E or (v, u) ∈ E}). Hence most of the terminology for
undirected graphs carries over to digraphs.

A directed walk in a digraph D is a sequence W = (v1, . . . , vk), for some k ∈ N, of
vertices such that there is an arc from vi to vi+1 in D, for all 1 6 i < k. In the same
way we define directed trails, directed paths, directed cycles, and directed tours.

References

[1] Michael Ben-Or, Lower bounds for algebraic computation trees. In Proc. 15th Annu.
ACM Sympos. Theory Comput., pp. 80–86, 1983.

13

https://doi.org/10.1145/800061.808735

Chapter 1. Fundamentals Geometry: C&A 2019

[2] John Adrian Bondy and U. S. R. Murty, Graph theory , vol. 244 of Graduate texts
in Mathematics, Springer-Verlag, London, 2008.

[3] Reinhard Diestel, Graph theory , vol. 173 of Graduate texts in Mathematics,
Springer-Verlag, Heidelberg, 5th edn., 2016.

[4] Karl Menger, Zur allgemeinen Kurventheorie. Fund. Math., 10, 1, (1927), 96–115.

[5] Douglas B. West, An introduction to graph theory , Prentice Hall, Upper Saddle
River, NJ, 2nd edn., 2001.

14

http://www.springer.com/us/book/9781846289699
http://diestel-graph-theory.com/
http://matwbn.icm.edu.pl/ksiazki/fm/fm10/fm1012.pdf
http://www.math.illinois.edu/~dwest/igt/

Chapter 2

Plane Embeddings

Graphs can be represented in a variety of ways, for instance, as an adjacency matrix or
using adjacency lists. In this chapter we explore another type of representations that
are quite different in nature, namely geometric representations of graphs. Geometric
representations are appealing because they allow to visualize a graph along with a variety
of its properties in a succinct manner. There are many degrees of freedom in selecting
the type of geometric objects and the details of their geometry. This freedom allows to
tailor the representation to meet specific goals, such as emphasizing certain structural
aspects of the graph at hand or reducing the complexity of the obtained representation.

The most common type of geometric graph representation is a drawing, where vertices
are mapped to points and edges to curves. Making such a map injective by avoiding edge
crossings is desirable, both from a mathematically aesthetic point of view and for the sake
of the practical readability of the drawing. Those graphs that allow such an embedding
into the Euclidean plane are known as planar. Our goal in the following is to study the
interplay between abstract planar graphs and their plane embeddings. Specifically, we
want to answer the following questions:

� What is the combinatorial complexity of planar graphs (number of edges and faces)?

� Under which conditions are plane embeddings unique (in a certain sense)?

� How can we represent plane embeddings (in a data structure)?

� What is the geometric complexity of plane embeddings, that is, can we bound the
size of the coordinates used and the complexity of the geometric objects used to
represent edges?

Most definitions we use directly extend to multigraphs. But for simplicity, we use the
term “graph” throughout.

2.1 Drawings, Embeddings and Planarity

A curve is a set C ⊂ R2 that is of the form {γ(t) : 0 6 t 6 1}, where γ : [0, 1]→ R2 is a
continuous function. The function γ is called a parameterization of C. The points γ(0)

15

Chapter 2. Plane Embeddings Geometry: C&A 2019

and γ(1) are the endpoints of the curve. For a closed curve, we have γ(0) = γ(1). A
curve is simple, if it admits a parameterization γ that is injective on [0, 1]. For a closed
simple curve we allow as an exception that γ(0) = γ(1). The following famous theorem
describes an important property of the plane. A proof can, for instance, be found in the
book of Mohar and Thomassen [22].

Theorem 2.1 (Jordan). Any simple closed curve C partitions the plane into exactly
two regions (connected open sets), each bounded by C.

Figure 2.1: A Jordan curve and two points in one of its faces (left); a simple closed
curve that does not disconnect the torus (right).

Observe that, for instance, on the torus there are closed curves that do not disconnect
the surface (and so the theorem does not hold there).

Drawings. As a first criterion for a reasonable geometric representation of a graph, we
would like to have a clear separation between different vertices and also between a vertex
and nonincident edges. Formally, a drawing of a graph G = (V, E) in the plane is a
function f that assigns

� a point f(v) ∈ R2 to every vertex v ∈ V and

� a simple curve f({u, v}) : [0, 1] → R2 with endpoints f(u) and f(v) to every edge
{u, v} ∈ E,

such that

(1) f is injective on V and

(2) f({u, v}) ∩ f(V) = {f(u), f(v)}, for every edge {u, v} ∈ E.

A common point f(e) ∩ f(e ′) between two curves that represent distinct edges e, e ′ ∈ E
is called a crossing if it is not a common endpoint of e and e ′.

For simplicity, when discussing a drawing of a graph G = (V, E) it is common to treat
vertices and edges as geometric objects. That is, a vertex v ∈ V is treated as the point
f(v) and an edge e ∈ E is treated as the curve f(e). For instance, the last sentence of
the previous paragraph may be phrased as “A common point of two edges that is not a
common endpoint is called a crossing.”

16

Geometry: C&A 2019 2.1. Drawings, Embeddings and Planarity

Often it is convenient to make additional assumptions about the interaction of edges
in a drawing. For example, in a nondegenerate drawing one may demand that no three
edges share a single crossing or that every pair of distinct edges intersects in at most
finitely many points.

Planar vs. plane. A graph is planar if it admits a drawing in the plane without cross-
ings. Such a drawing is also called a crossing-free drawing or a (plane) embedding of
the graph. A planar graph together with a particular plane embedding is called a plane
graph. Note the distinction between “planar” and “plane”: the former indicates the pos-
sibility of an embedding, whereas the latter refers to a concrete embedding (Figure 2.2).

Figure 2.2: A planar graph (left) and a plane embedding of it (right).

A geometric graph is a graph together with a drawing, in which all edges are realized
as straight-line segments. Note that such a drawing is completely defined by the mapping
for the vertices. A plane geometric graph is also called a plane straight-line graph
(PSLG). In contrast, a plane graph in which the edges may form arbitrary simple curves
is called a topological plane graph.

The faces of a plane graph are the maximally connected regions of the plane that
do not contain any point used by the embedding (as the image of a vertex or an edge).
Each embedding of a finite graph has exactly one unbounded face, also called outer or
infinite face. Using stereographic projection, it is not hard to show that the role of the
unbounded face is not as special as it may seem at first glance.

Theorem 2.2. If a graph G has a plane embedding in which some face is bounded by
the cycle (v1, . . . , vk), then G also has a plane embedding in which the unbounded
face is bounded by the cycle (v1, . . . , vk).

Proof. (Sketch) Take a plane embedding Γ of G and map it to the sphere using stere-
ographic projection : Imagine R2 being the x/y-plane in R3 and place a unit sphere
S such that its south pole touches the origin. We obtain a bijective continuous map
between R2 and S \ {n}, where n is the north pole of S, as follows: A point p ∈ R2 is
mapped to the point p ′ that is the intersection of the line through p and n with S, see
Figure 2.3.

Consider the resulting embedding Γ ′ of G on S: The infinite face of Γ corresponds
to the face of Γ ′ that contains the north pole n of S. Now rotate the embedding Γ ′ on

17

Chapter 2. Plane Embeddings Geometry: C&A 2019

n

p

p ′

(a) Three-dimensional view.

n

p

p ′

q

q ′

0
(b) Cross-section view.

Figure 2.3: Stereographic projection.

S such that the desired face contains n. Mapping back to the plane using stereographic
projection results in an embedding in which the desired face is the outer face.

Exercise 2.3. Consider the plane graphs depicted in Figure 2.4. For both graphs give
a plane embedding in which the cycle 1, 2, 3 bounds the outer face.

2

3

5
4

1

(a)

2
3

5

4

1

6 7

8

(b)

Figure 2.4: Make 1, 2, 3 bound the outer face.

Duality. Every plane graph G has a dual G∗, whose vertices are the faces of G and
two are connected by an edge in G∗, if and only if they have a common edge in G. In
general, G∗ is a multigraph (may contain loops and multiple edges) and it depends on
the embedding. That is, an abstract planar graph G may have several nonisomorphic
duals. If G is a connected plane graph, then (G∗)∗ = G. We will see later in Section 2.3
that the dual of a 3-connected planar graph is unique (up to isomorphism).

The Euler Formula and its ramifications. One of the most important tools for planar graphs
(and more generally, graphs embedded on a surface) is the Euler–Poincaré Formula.

Theorem 2.4 (Euler’s Formula). For every connected plane graph with n vertices, e
edges, and f faces, we have n− e+ f = 2.

18

Geometry: C&A 2019 2.1. Drawings, Embeddings and Planarity

G

G∗

G

G∗

Figure 2.5: Two plane drawings and their duals for the same planar graph.

In particular, this shows that for any planar graph the number of faces is the same
in every plane embedding. In other words the number of faces is an invariant of an
abstract planar graph. It also follows (stated below as a corollary) that planar graphs
are sparse, that is, they have a linear number of edges (and faces) only. So the asymptotic
complexity of a planar graph is already determined by its number of vertices.

Corollary 2.5. A simple planar graph on n > 3 vertices has at most 3n− 6 edges and
at most 2n− 4 faces.

Proof. Without loss of generality we may assume that G is connected. (If not, add edges
between components of G until the graph is connected. The number of faces remains
unchanged and the number of edges only increases.) The statement is easily checked for
n = 3, where G is either a triangle or a path and, therefore, has no more than 3 ·3−6 = 3
edges and no more than 2 ·3−4 = 2 faces. So consider a simple planar graph G on n > 4
vertices. Consider a plane drawing of G and denote by E the set of edges and by F the
set of faces of G. Let

X = {(e, f) ∈ E× F : e bounds f}

denote the set of incident edge-face pairs. We count X in two different ways.
First note that each edge bounds at most two faces and so |X| 6 2 · |E|.
Second note that in a simple connected planar graph on four or more vertices every

face is bounded by at least three vertices: Every bounded face needs at least three edges
to be enclosed and if there is no cycle on the boundary of the unbounded face, then—
given that G is connected—G must be a tree on four or more vertices and so it has at
least three edges, all of which bound the unbounded face. Therefore |X| > 3 · |F|.

Using Euler’s Formula we conclude that

4 = 2n− 2|E|+ 2|F| 6 2n− 3|F|+ 2|F| = 2n− |F| and
6 = 3n− 3|E|+ 3|F| 6 3n− 3|E|+ 2|E| = 3n− |E| ,

which yields the claimed bounds.

It also follows that the degree of a “typical” vertex in a planar graph is a small
constant. There exist several variations of this statement, a few more of which we will
encounter during this course.

19

Chapter 2. Plane Embeddings Geometry: C&A 2019

Corollary 2.6. The average vertex degree in a simple planar graph is less than six.

Exercise 2.7. Prove Corollary 2.6.

Exercise 2.8. Show that neither K5 (the complete graph on five vertices) nor K3,3 (the
complete bipartite graph where both classes have three vertices) is planar.

Characterizing planarity. The classical theorems of Kuratowski and Wagner provide a char-
acterization of planar graphs in terms of forbidden substructures. A subdivision of a
graph G = (V, E) is a graph that is obtained from G by replacing each edge with a path.

Theorem 2.9 (Kuratowski [20, 27]). A graph is planar if and only if it does not contain
a subdivision of K3,3 or K5.

A minor of a graph G = (V, E) is a graph that is obtained from G using zero or more
edge contractions, edge deletions, and/or vertex deletions.

Theorem 2.10 (Wagner [30]). A graph is planar if and only if it does not contain K3,3
or K5 as a minor.

In some sense, Wagner’s Theorem is a special instance1 of a much more general
theorem.

Theorem 2.11 (Graph Minor Theorem, Robertson/Seymour [25]). Every minor-closed
family of graphs can be described in terms of a finite set of forbidden minors.

Being minor-closed means that for every graph from the family also all of its minors
belong to the family. For instance, the family of planar graphs is minor-closed because
planarity is preserved under removal of edges and vertices and under edge contractions.
The Graph Minor Theorem is a celebrated result that was established by Robertson and
Seymour in a series of twenty papers, see also the survey by Lovász [21]. They also
describe an O(n3) algorithm (with horrendous constants, though) to decide whether a
graph on n vertices contains a fixed (constant-size) minor. Later, Kawarabayashi et al. [18]
showed that this problem can be solved in O(n2) time. As a consequence, every minor-
closed property can be decided in polynomial time.

Unfortunately, the result is nonconstructive in the sense that in general we do not
know how to obtain the set of forbidden minors for a given family/property. For instance,
for the family of toroidal graphs (graphs that can be embedded without crossings on the
torus) more than 16 ′000 forbidden minors are known, and we do not know how many
there are in total. So while we know that there exists a quadratic time algorithm to test
membership for minor-closed families, we have no idea what such an algorithm looks like
in general.

Graph families other than planar graphs for which the forbidden minors are known
include forests (K3) and outerplanar graphs (K2,3 and K4). A graph is outerplanar if it
admits a plane embedding such that all vertices appear on the outer face (Figure 2.6).

1It is more than just a special instance because it also specifies the forbidden minors explicitly.

20

Geometry: C&A 2019 2.2. Graph Representations

Figure 2.6: An outerplanar graph (left) and a plane embedding of it in which all
vertices are incident to the outer face (right).

Exercise 2.12. (a) Give an example of a 6-connected planar graph or argue that no
such graph exists.

(b) Give an example of a 5-connected planar graph or argue that no such graph
exists.

(c) Give an example of a 3-connected outerplanar graph or argue that no such
graph exists.

Planarity testing. For planar graphs we do not have to contend ourselves with a cubic-
time algorithm, as there are several approaches to solve the problem in linear time. In
fact, there is quite a number of papers that describe different linear time algorithms, all
of which—from a very high-level point of view—can be regarded as an annotated depth-
first-search. The first such algorithm was described by Hopcroft and Tarjan [17], while
the current state-of-the-art is probably among the “path searching” method by Boyer
and Myrwold [5] and the “LR-partition” method by de Fraysseix et al [13]. Although the
overall idea in all these approaches is easy to convey, there are many technical details,
which make an in-depth discussion rather painful to go through.

2.2 Graph Representations

There are two standard representations for an abstract graph G = (V, E) on n = |V |

vertices. For the adjacency matrix representation we consider the vertices to be ordered
as V = {v1, . . . , vn}. The adjacency matrix of an undirected graph is a symmetric n×n-
matrix A = (aij)16i,j6n where aij = aji = 1, if {i, j} ∈ E, and aij = aji = 0, otherwise.
Storing such a matrix explicitly requires Ω(n2) space, and allows to test in constant time
whether or not two given vertices are adjacent.

In an adjacency list representation, we store for each vertex a list of its neighbors in
G. This requires only O(n+ |E|) storage, which is better than for the adjacency matrix in
case that |E| = o(n2). On the other hand, the adjacency test for two given vertices is not
a constant-time operation, because it requires a search in one of the lists. Depending on
the representation of these lists, such a search takes O(d) time (unsorted list) or O(logd)
time (sorted random-access representation, such as a balanced search tree), where d is
the minimum degree of the two vertices.

21

Chapter 2. Plane Embeddings Geometry: C&A 2019

Both representations have their merits. The choice of which one to use (if any)
typically depends on what one wants to do with the graph. When dealing with embedded
graphs, however, additional information concerning the embedding is needed beyond
the pure incidence structure of the graph. The next section discusses a standard data
structure to represent embedded graphs.

2.2.1 The Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a data structure to represent a plane graph
in such a way that it is easy to traverse and to manipulate. In order to avoid unnecessary
complications, let us discuss only connected graphs here that contain at least two vertices.
It is not hard to extend the data structure to cover all plane graphs. For simplicity we
also assume that we deal with a straight-line embedding and so the geometry of edges
is defined by the mapping of their endpoints already. For more general embeddings, the
geometric description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is
represented by two halfedges going in opposite direction, and these are called twins, see
Figure 2.7. Along the boundary of each face, halfedges are oriented counterclockwise.

h

next(h)

prev(h)

twin(h)

target(h)

face(h)

Figure 2.7: A halfedge in a DCEL.

A DCEL stores a list of halfedges, a list of vertices, and a list of faces. These lists are
unordered but interconnected by various pointers. A vertex v stores a pointer halfedge(v)
to an arbitrary halfedge originating from v. Every vertex also knows its coordinates, that
is, the point point(v) it is mapped to in the represented embedding. A face f stores a
pointer halfedge(f) to an arbitrary halfedge within the face. A halfedge h stores five
pointers:

� a pointer target(h) to its target vertex,

� a pointer face(h) to the incident face,

� a pointer twin(h) to its twin halfedge,

22

Geometry: C&A 2019 2.2. Graph Representations

� a pointer next(h) to the halfedge following h along the boundary of face(h), and

� a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V |+ |E|+ |F|, which is
O(n) for a plane graph with n vertices by Corollary 2.5.

This information is sufficient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s← halfedge(f)
h← s

do
something with h
h← next(h)

while h 6= s

Exercise 2.13. Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 2.14. Why is the previous halfedge prev(·) stored explicitly and the source
vertex of a halfedge is not?

2.2.2 Manipulating a DCEL

In many applications, plane graphs appear not just as static objects but rather they
evolve over the course of an algorithm. Therefore the data structure used to represent
the graph must allow for efficient update operations to change it.

First of all, we need to be able to generate new vertices, edges, and faces, to be added
to the corresponding list within the DCEL and—symmetrically—the ability to delete an
existing entity. Then it should be easy to add a new vertex v to the graph within some
face f. As we maintain a connected graph, we better link the new vertex to somewhere,
say, to an existing vertex u. For such a connection to be possible, we require that the
open line segment uv lies completely in f.

Of course, two halfedges are to be added connecting u and v. But where exactly?
Given that from a vertex and from a face only some arbitrary halfedge is directly accessi-
ble, it turns out convenient to use a halfedge in the interface. Let h denote the halfedge
incident to f for which target(h) = u. Our operation then becomes (see also Figure 2.8)

add-vertex-at(v, h)
Precondition: the open line segment point(v)point(u), where u := target(h),

lies completely in f := face(h).
Postcondition: a new vertex v has been inserted into f, connected by an edge

to u.

23

Chapter 2. Plane Embeddings Geometry: C&A 2019

u

v

h f

. . .

. . .

(a) before

u

v

h

f

h1

h2

. . .

. . .

(b) after

Figure 2.8: Add a new vertex connected to an existing vertex u.

and it can be realized by manipulating a constant number of pointers as follows.

add-vertex-at(v, h) {
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(v)← h2
twin(h1)← h2
twin(h2)← h1
target(h1)← v

target(h2)← u

face(h1)← f

face(h2)← f

next(h1)← h2
next(h2)← next(h)
prev(h1)← h

prev(h2)← h1
next(h)← h1
prev(next(h2))← h2

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 2.9. Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we use the halfedge h that is incident to f and for which target(h) = u.
Our operation becomes then

split-face(h, v)
Precondition: v is incident to f := face(h) but not adjacent to u := target(h).

The open line segment point(v)point(u) lies completely in f.
Postcondition: f has been split by a new edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident

24

Geometry: C&A 2019 2.2. Graph Representations

u

v

fh

(a) before

u

v

f1

h
f2

h1

h2

(b) after

Figure 2.9: Split a face by an edge uv.

halfedges. In particular, this is not a constant time operation, but its time complexity
is proportional to the size of f.

split-face(h, v) {
f1 ← a new face
f2 ← a new face
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(f1)← h1
halfedge(f2)← h2
twin(h1)← h2
twin(h2)← h1
target(h1)← v

target(h2)← u

next(h2)← next(h)
prev(next(h2))← h2
prev(h1)← h

next(h)← h1
i← h2
loop

face(i)← f2
if target(i) = v break the loop
i← next(i)

endloop
next(h1)← next(i)
prev(next(h1))← h1
next(i)← h2
prev(h2)← i

i← h1
do

face(i)← f1

25

Chapter 2. Plane Embeddings Geometry: C&A 2019

i← next(i)
until target(i) = u
delete the face f

}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge (represented by the halfedge) h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K2 (two vertices connected by an edge).

Exercise 2.15. Give pseudocode for the operation join-face(h). Also specify precondi-
tions, if needed.

Exercise 2.16. Give pseudocode for the operation split-edge(h), that splits the edge
(represented by the halfedge) h into two by a new vertex w, see Figure 2.10.

u

v

h

f2

f1

(a) before

u

v

w

h2

h1

k1

k2
f2

f1

(b) after

Figure 2.10: Split an edge by a new vertex.

2.2.3 Graphs with Unbounded Edges

In some cases it is convenient to consider plane graphs, in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much different from the one we studied before, except that one vertex is placed “at
infinity”. One way to think of it is in terms of stereographic projection (see the proof of
Theorem 2.2). The further away a point in R2 is from the origin, the closer its image on
the sphere S gets to the north pole n of S. But there is no way to reach n except in the
limit. Therefore, we can imagine drawing the graph on S instead of in R2 and putting
the “infinite vertex” at n.

All this is just for the sake of a proper geometric interpretation. As far as a DCEL
representation of such a graph is concerned, there is no need to consider spheres or, in
fact, anything beyond what we have discussed before. The only difference to the case
with all finite edges is that there is this special infinite vertex, which does not have any

26

Geometry: C&A 2019 2.2. Graph Representations

∞

Figure 2.11: A DCEL with unbounded edges. Usually, we will not show the infi-
nite vertex and draw all edges as straight-line segments. This yields a
geometric drawing, like the one within the gray box.

point/coordinates associated to it. But other than that, the infinite vertex is treated
in exactly the same way as the finite vertices: it has in– and outgoing halfedges along
which the unbounded faces can be traversed (Figure 2.11).

Remarks. It is actually not so easy to point exactly to where the DCEL data struc-
ture originates from. Often Muller and Preparata [23] are credited, but while they use
the term DCEL, the data structure they describe is different from what we discussed
above and from what people usually consider a DCEL nowadays. Overall, there are a
large number of variants of this data structure, which appear under the names winged
edge data structure [3], halfedge data structure [31], or quad-edge data structure [15].
Kettner [19] provides a comparison of all these and some additional references.

2.2.4 Combinatorial Embeddings

The DCEL data structure discussed in the previous section provides a fully fleshed-out
representation of what is called a combinatorial embedding. From a mathematical point
of view this can be regarded an equivalence relation on embeddings: Two embeddings are
equivalent if their face boundaries—regarded as circular sequences of edges (or vertices)
in counterclockwise order—are the same (as sets) up to a global change of orientation
(reversing the order of all sequences simultaneously). For instance, the faces of the plane

27

Chapter 2. Plane Embeddings Geometry: C&A 2019

graphs shown in Figure 2.12a are (each face is described as a circular sequence of vertices)

(a) : {(1, 2, 3), (1, 3, 6, 4, 5, 4), (1, 4, 6, 3, 2)} ,

(b) : {(1, 2, 3, 6, 4, 5, 4), (1, 3, 2), (1, 4, 6, 3)} , and
(c) : {(1, 4, 5, 4, 6, 3), (1, 3, 2), (1, 2, 3, 6, 4)} .

Note that a vertex can appear several times along the boundary of a face (if it is a
cut-vertex). Clearly (b) is not equivalent to (a) nor (c), because it is the only graph
that contains a face bounded by seven vertices. However, (a) and (c) turn out to be
equivalent: after reverting orientations f1 takes the role of h2, f2 takes the role of h1,
and f3 takes the role of h3.

1

2

3

4

5
6f1 f2

f3

(a)

1

2

3

4

5
6

g2

g1

g3

(b)

1

2

3

4

6 5

h2

h1
h3

(c)

Figure 2.12: Equivalent embeddings?

Exercise 2.17. Let G be a planar graph with vertex set {1, . . . , 9}. Try to find an
embedding corresponding to the following list of circular sequences of faces:

(a) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 5, 4)}

(b) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 4, 5)}

In a dual interpretation one can just as well define equivalence in terms of the cyclic
order of neighbors around all vertices. In this form, a compact way to describe a com-
binatorial embedding is as a so-called rotation system that consists of a permutation π
and an involution ρ, both of which are defined on the set of halfedges (in this context
often called darts or flags) of the embedding. The orbits of π correspond to the vertices,
as they iterate over the incident halfedges. The involution ρ maps each halfedge to its
twin.

Many people prefer this dual view, because one does not have to discuss the issue
of vertices or edges that appear several times on the boundary of a face. The following
lemma shows that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.18. In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is probably clear. But
we believe it is instructive to think about how to make a formal argument. An easy
consequence is the following corollary, whose proof we also leave as an exercise.

28

Geometry: C&A 2019 2.3. Unique Embeddings

Corollary 2.19. In a 3-connected plane graph the neighbors of a vertex lie on a cycle.

Note that the statement does not read “form a cycle” but rather “lie on a cycle”.

Exercise 2.20. Prove Lemma 2.18 and Corollary 2.19.

2.3 Unique Embeddings

We have seen in Lemma 2.18 that all faces in biconnected plane graphs are bounded by
cycles. Conversely one might wonder which cycles of a planar graph G bound a face in
some plane embedding of G. Such a cycle is called a facial cycle (Figure 2.13).

1

2

3

4

5

Figure 2.13: The cycle (1, 2, 3) is facial and we can show that (2, 3, 4) is not.

In fact, we will look at a slightly different class of cycles, namely those that bound a
face in every plane embedding of G. The lemma below provides a complete character-
ization of those cycles. In order to state it, let us introduce a bit more terminology. A
chord of a cycle C in a graph G is an edge that connects two vertices of C but is not an
edge of C. A cycle C in a graph G is an induced cycle, if C = G[V(C)], that is, C does
not have any chord in G.

Lemma 2.21. Let C be a cycle in a planar graph G such that G 6= C and G is not C
plus a single chord of C. Then C bounds a face in every plane embedding of G if
and only if C is an induced cycle and it is not separating (i.e., G \C is connected).

Proof. “⇐”: Consider any plane embedding Γ of G. As G\C is connected, by the Jordan
Curve Theorem it is contained either in the interior of C or in the exterior of C in Γ .
In either case, the other component of the plane is bounded by C, because there are no
edges among the vertices of C.

“⇒": Using contraposition, suppose that C is not induced or G \ C is disconnected.
We have to show that there exists a plane embedding of G in which C does not bound
a face.

If C is not induced, then there is a chord c of C in G. As G 6= C ∪ c, either G has a
vertex v that is not in C or G contains another chord d 6= c of C. In either case, consider
any plane embedding Γ of G in which C bounds a face. (If such an embedding does not
exist, there is nothing to show.) We can modify Γ by drawing the chord c in the face

29

Chapter 2. Plane Embeddings Geometry: C&A 2019

bounded by C to obtain an embedding Γ ′ of G in which C does not bound a face: one of
the two regions bounded by C according to the Jordan Curve Theorem contains c and
the other contains either the vertex v or the other chord d.

If G \C contains two components A and B, then consider a plane embedding Γ of G.
If C is not a face in Γ , there is nothing to show. Hence suppose that C is a face of Γ
(Figure 2.14a). From Γ we obtain induced plane embeddings ΓA of G \ B = A ∪ C and
ΓB of G \A = B ∪ C. Using Theorem 2.2 we may suppose that C bounds the outer face
in ΓA and it does not bound the outer face in ΓB. Then we can glue both embeddings at
C, that is, extend ΓB to an embedding of G by adding ΓA within the face bounded by C
(Figure 2.14b). The resulting embedding is a plane drawing of G in which C does not
bound a face.

C

A

B

(a)

C

B

A

(b)

Figure 2.14: Construct a plane embedding of G in which C does not bound a face.

Finally, consider the case that G \ C = ∅ (which is not a connected graph according
to our definition). As we considered above the case that C is not an induced cycle, the
only remaining case is G = C, which is excluded explicitly.

For both special cases for G that are excluded in Lemma 2.21 it is easy to see that all
cycles in G bound a face in every plane embedding. This completes the characterization.
Also observe that in these special cases G is not 3-connected.

Corollary 2.22. A cycle C of a 3-connected planar graph G bounds a face in every plane
embedding of G if and only if C is an induced cycle and it is not separating.

The following theorem tells us that for a wide range of graphs we have little choice
as far as a plane embedding is concerned, at least from a combinatorial point of view.
Geometrically, there is still a lot of freedom, though.

Theorem 2.23 (Whitney [32]). A 3-connected planar graph has a unique combinatorial
plane embedding (up to equivalence).

Proof. Let G be a 3-connected planar graph and suppose there exist two embeddings Φ1
and Φ2 of G that are not equivalent. That is, there is a cycle C = (v1, . . . , vk), k > 3, in
G that bounds a face in, say, Φ1 but C does not bound a face in Φ2. By Corollary 2.22
such a cycle has a chord or it is separating. We consider both options.

30

Geometry: C&A 2019 2.3. Unique Embeddings

Case 1: C has a chord {vi, vj}, with j > i + 2. Denote A = {vx : i < x < j} and
B = {vx : x < i ∨ j < x} and observe that both A and B are nonempty (because {vi, vj} is
a chord and so vi and vj are not adjacent in C). Given that G is 3-connected, there is at
least one path P from A to B that does not use either of vi or vj. Let a denote the last
vertex of P that is in A, and let b denote the first vertex of P that is in B. As C bounds
a face f in Φ1, we can add a new vertex v inside the face bounded by C and connect
v by four pairwise internally disjoint curves to each of vi, vj, a, and b. The result is a
plane graph G ′ ⊃ G that contains a subdivision of K5 with branch vertices v, vi, vj, a,
and b. By Kuratowski’s Theorem (Theorem 2.9) this contradicts the planarity of G ′.

vj

vi

f
A

B

P

a

b

v

(a) Case 1.

a
b

c1

c2

c3

v

(b) Case 2.

Figure 2.15: Illustration of the two cases in Theorem 2.23.

Case 2: C is induced and separating. Then G \C contains two distinct components A
and B. (We have V(G) 6= V(C) and, in particular, G \ C 6= ∅ because C is induced and
G is 3-connected.) Consider now the embedding Φ1 in which C bounds a face, without
loss of generality (Theorem 2.2) a bounded face f. Hence both A and B are embedded
in the exterior of f.

Choose vertices a ∈ A and b ∈ B arbitrarily. As G is 3-connected, by Menger’s
Theorem (Theorem 1.2), there are at least three pairwise internally vertex-disjoint paths
from a to b. Fix three such paths α1, α2, α3 and denote by ci the first point of αi that
is on C, for 1 6 i 6 3. Note that c1, c2, c3 are well defined, because C separates A and
B, and they are pairwise distinct. Therefore, {a, b} and {c1, c2, c3} are branch vertices of
a K2,3 subdivision in G. We can add a new vertex v inside the face bounded by C and
connect v by three pairwise internally disjoint curves to each of c1, c2, and c3. The result
is a plane graph G ′ ⊃ G that contains a K3,3 subdivision. By Kuratowski’s Theorem
(Theorem 2.9) this contradicts the planarity of G ′.

In both cases we arrived at a contradiction and so there does not exist such a cycle
C. Thus Φ1 and Φ2 are equivalent.

Whitney’s Theorem does not provide a characterization of unique embeddability,
because there are both biconnected graphs that have a unique plane embedding (such as
cycles) and biconnected graphs that admit several nonequivalent plane embeddings (for
instance, a triangulated pentagon).

31

Chapter 2. Plane Embeddings Geometry: C&A 2019

2.4 Triangulating a Plane Graph

We like to study worst case scenarios not so much to dwell on “how bad things could get”
but rather—phrased positively—because worst case examples provide universal bounds
of the form “things are always at least that good”. Most questions related to embeddings
get harder the more edges the graph has because every additional edge needs to avoid
potential crossings with other edges. Therefore, let us study the class of maximal planar
graphs. A graph is maximal planar if no edge can be added so that the resulting graph
is still planar. Corollary 2.5 tells us that a (maximal) planar graph on n vertices cannot
have more than 3n − 6 edges. Yet we would like to learn a bit more about how these
graphs look like.

Lemma 2.24. A maximal planar graph on n > 3 vertices is biconnected.

Proof. Consider a maximal planar graph G = (V, E). We may suppose that G is con-
nected because adding an edge between two distinct components of a planar graph main-
tains planarity. Therefore, if G is not biconnected, then it has a cut-vertex v. Take a
plane drawing Γ of G. As G \ v is disconnected, removal of v also splits NG(v) into at
least two components. Therefore, there are two vertices a, b ∈ NG(v) that are adjacent
in the circular order of vertices around v in Γ and are in different components of G \ v.
In particular, {a, b} /∈ E and we can add this edge to G (routing it very close to the path
(a, v, b) in Γ) without violating planarity. This is in contradiction to G being maximal
planar and so G is biconnected.

Lemma 2.25. In a maximal planar graph on n > 3 vertices, all faces are topological
triangles, that is, every face is bounded by exactly three edges.

Proof. Consider a maximal planar graph G = (V, E) and a plane drawing Γ of G. By
Lemma 2.24 we know that G is biconnected and so by Lemma 2.18 every face of Γ is
bounded by a cycle. Suppose that there is a face f in Γ that is bounded by a cycle
v0, . . . , vk−1 of k > 4 vertices. We claim that at least one of the edges {v0, v2} or {v1, v3}
is not present in G.

Suppose to the contrary that {{v0, v2}, {v1, v3}} ⊆ E. Then we can add a new vertex
v ′ in the interior of f and connect v ′ inside f to all of v0, v1, v2, v3 by an edge (curve)
without introducing a crossing. In other words, given that G is planar, also the graph
G ′ = (V ∪ {v ′}, E∪ {{vi, v ′} : i ∈ {0, 1, 2, 3}}) is planar. However, v0, v1, v2, v3, v ′ are branch
vertices of a K5 subdivision in G ′: v ′ is connected to all other vertices within f, along the
boundary ∂f of f each vertex vi is connected to both v(i−1)mod4 and v(i+1)mod4 and the
missing two connections are provided by the edges {v0, v2} and {v1, v3} (Figure 2.16a).
By Kuratowski’s Theorem this is in contradiction to G ′ being planar. Therefore, one of
the edges {v0, v2} or {v1, v3} is not present in G, as claimed.

So suppose without loss of generality that {v1, v3} /∈ E. But then we can add this edge
(curve) within f to Γ without introducing a crossing (Figure 2.16b). It follows that the
edge {v1, v3} can be added to G without sacrificing planarity, which is in contradiction

32

Geometry: C&A 2019 2.4. Triangulating a Plane Graph

v0

v1

v2

v3

∂f

v ′

(a)

v0

v1

v2

v3

∂f

(b)

Figure 2.16: Every face of a maximal planar graph is a topological triangle.

to G being maximal planar. Therefore, there is no such face f bounded by four or more
vertices.

Exercise 2.26. Does every minimal nonplanar graph G (that is, every nonplanar graph
G whose proper subgraphs are all planar) contain an edge e such that G \ e is
maximal planar?

Many questions for graphs are formulated for connected graphs only because it is
easy to add edges to a disconnected graph to make it connected. For similar reasons
many questions about planar embeddings are formulated for maximal planar graphs
only because it is easy to add edges to a planar graph so as to make it maximal planar.
Well, this last statement is not entirely obvious. Let us look at it in more detail.

An augmentation of a given planar graph G = (V, E) to a maximal planar graph G ′ =
(V, E) with E ′ ⊇ E is also called a topological triangulation. The proof of Lemma 2.25
already contains the basic idea for an algorithm to topologically triangulate a plane
graph.

Theorem 2.27. For a given connected plane graph G = (V, E) on n vertices one can
compute in O(n) time and space a maximal plane graph G ′ = (V, E ′) with E ⊆ E ′.
Proof. Suppose, for instance, that G is represented as a DCEL2, from which one can
easily extract the face boundaries. If some vertex v appears several times along the
boundary of a single face, it is a cut-vertex. We fix this by adding an edge between the
two neighbors of all but the first occurrence of v. This can easily be done in linear time
by maintaining a counter for each vertex on the face boundary. The total number of
edges and vertices along the boundary of all faces is proportional to the number of edges
in G, which by Corollary 2.5 is linear. Hence we may suppose that all faces of G are
bounded by a cycle.

For every face f that is bounded by more than three vertices, select a vertex vf on its
boundary and store with every vertex all faces that select it. Then process every vertex

2If you wonder how the—possibly complicated—curves that correspond to edges are represented: they
do not need to be, because here we need a representation of the combinatorial embedding only.

33

Chapter 2. Plane Embeddings Geometry: C&A 2019

v as follows: First mark all neighbors of v in G. Then process all faces that selected v.
For each such face f with vf = v iterate over the boundary ∂f = (v, v1, . . . , vk), where
k > 3, of f to test whether there is any marked vertex other than the two neighbors v1
and vk of v along ∂f.

If there is no such vertex, we can safely triangulate f using a star from v, that is, by
adding the edges {v, vi}, for i ∈ {2, . . . , k− 1} (Figure 2.17a).

Otherwise, let vx be the first marked vertex in the sequence v2, . . . , vk−1. The
edge {v, vx} that is embedded as a curve in the exterior of f prevents any vertex from
v1, . . . , vx−1 from being connected by an edge in G to any vertex from vx+1, . . . , vk. (This
is exactly the argument that we made in the proof of Lemma 2.25 above for the edges
{v0, v2} and {v1, v3}, see Figure 2.16a.) In particular, we can safely triangulate f using a
bi-star from v1 and vx+1, that is, by adding the edges {v1, vi}, for i ∈ {x+ 1, . . . , k}, and
{vj, vx+1}, for j ∈ {2, . . . , x− 1} (Figure 2.17b).

v1

v3

vk

v

∂f

v2

vk−1

(a) Case 1: v does not have any neighbor
on ∂f other than v1 and vk.

v1

vx

vk

v

f

v2
vk−1

vx+1

(b) Case 2: v has a neighbor vx on ∂f other
than v1 and vk.

Figure 2.17: Topologically triangulating a plane graph.

Finally, conclude the processing of v by removing all marks on its neighbors.
Regarding the runtime bound, note that every face is traversed a constant number

of times. In this way, each edge is touched a constant number of times, which by
Corollary 2.5 uses linear time overall. Similarly, marking the neighbors of a chosen
vertex is done at most twice (mark und unmark) per vertex. Therefore, the overall time
needed can be bounded by

∑
v∈V degG(v) = 2|E| = O(n) by the Handshaking Lemma

and Corollary 2.5.

Theorem 2.28. A maximal planar graph on n > 4 vertices is 3-connected.

Exercise 2.29. Prove Theorem 2.28.

Using any of the standard planarity testing algorithms we can obtain a combinatorial
embedding of a planar graph in linear time. Together with Theorem 2.27 this yields the
following

Corollary 2.30. For a given planar graph G = (V, E) on n vertices one can compute in
O(n) time and space a maximal planar graph G ′ = (V, E ′) with E ⊆ E ′.

34

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

The results discussed in this section can serve as a tool to fix the combinatorial
embedding for a given graph G: augment G using Theorem 2.27 to a maximal planar
graph G ′, whose combinatorial embedding is unique by Theorem 2.23.

Being maximal planar is a property of an abstract graph. In contrast, a
geometric graph to which no straight-line edge can be added without introduc-
ing a crossing is called a triangulation. Not every triangulation is maximal
planar, as the example depicted to the right shows.

It is also possible to triangulate a geometric graph in linear time. But this problem
is much more involved. Triangulating a single face of a geometric graph amounts to
what is called “triangulating a simple polygon”. This can be done in near-linear3 time
using standard techniques, and in linear time using Chazelle’s famous algorithm, whose
description spans a fourty pages paper [8].

Exercise 2.31. We discussed the DCEL structure to represent plane graphs in Sec-
tion 2.2.1. An alternative way to represent an embedding of a maximal planar
graph is the following: For each triangle, store references to its three vertices and
to its three neighboring triangles. Compare both approaches. Discuss different sce-
narios where you would prefer one over the other. In particular, analyze the space
requirements of both.

Connectivity serves as an important indicator for properties of planar graphs. An-
other example is the following famous theorem of Tutte that provides a sufficient condi-
tion for Hamiltonicity. Its proof is beyond the scope of our lecture.

Theorem 2.32 (Tutte [28]). Every 4-connected planar graph is Hamiltonian.

Moreover, for a given 4-connected planar graph a Hamiltonian cycle can also be
computed in linear time [9].

2.5 Compact Straight-Line Drawings

As a next step we consider plane embeddings in the geometric setting, where every edge
is drawn as a straight-line segment. A classical theorem of Wagner and Fáry states that
this is not a restriction in terms of plane embeddability.

Theorem 2.33 (Fáry [12], Wagner [29]). Every planar graph has a plane straight-line
embedding.

This statement is quite surprising, considering how much more freedom arbitrarily
complex Jordan arcs allow compared to line segments, which are completely determined
by their endpoints. In order to further increase the level of appreciation, let us note that
a similar “straightening” is not possible, when fixing the point set on which the vertices
are to be embedded: For a given planar graph G = (V, E) on n vertices and a given

3O(n logn) or—using more elaborate tools—O(n log∗ n) time

35

Chapter 2. Plane Embeddings Geometry: C&A 2019

set P ⊂ R2 of n points, one can always find a plane embedding of G that maps V to
P [24]. However, this is not possible in general with a plane straight-line embedding.
For instance, K4 does not admit a plane straight-line embedding on a set of points that
form a convex quadrilateral, such as a rectangle. In fact, it is NP-hard to decide whether
a given planar graph admits a plane straight-line embedding on a given point set [6].

Exercise 2.34. a) Show that for every natural number n > 4 there exist a planar graph
G on n vertices and a set P ⊂ R2 of n points in general position (no three points
are collinear) so that G does not admit a plane straight-line embedding on P.

b) Show that for every natural number n > 6 there exist a planar graph G on n
vertices and a set P ⊂ R2 of n points so that (1) P is in general position (no three
points are collinear); (2) P has a triangular convex hull (that is, there are three
points in P that form a triangle that contains all other points from P); and (3) G
does not admit a plane straight-line embedding on P.

Exercise 2.35. Show that for every set P ⊂ R2 of n > 3 in general position (no
three points are collinear) the cycle Cn on n vertices admits a plane straight-line
embedding on P.

Although Fáry-Wagner’s theorem has a nice inductive proof, we will not discuss it
here. Instead we will prove a stronger statement that implies Theorem 2.33.

A very nice property of straight-line embeddings is that they are easy to represent:
We need to store points/coordinates for the vertices only. From an algorithmic and com-
plexity point of view the space needed by such a representation is important, because
it appears in the input and output size of algorithms that work on embedded graphs.
While the Fáry-Wagner Theorem guarantees the existence of a plane straight-line em-
bedding for every planar graph, it does not provide bounds on the size of the coordinates
used in the representation. But the following strengthening provides such bounds, by
describing an algorithm that embeds (without crossings) a given planar graph on a linear
size integer grid.

Theorem 2.36 (de Fraysseix, Pach, Pollack [14]). Every planar graph on n > 3 vertices
has a plane straight-line drawing on the (2n− 3)× (n− 1) integer grid.

2.5.1 Canonical Orderings

The key concept behind the algorithm is the notion of a canonical ordering, which is a
vertex order that allows to construct a plane drawing in a natural (hence canonical) way.
Reading it backwards one may think of a shelling or peeling order that destructs the
graph vertex by vertex from the outside. A canonical ordering also provides a succinct
representation for the combinatorial embedding.

Definition 2.37. A plane graph is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. Let G be an internally triangulated plane
graph and C◦(G) its outer cycle. A permutation π = (v1, v2, . . . , vn) of V(G) is a
canonical ordering for G, if

36

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

(CO1) Gk is internally triangulated, for all k ∈ {3, . . . , n};

(CO2) v1v2 is on the outer cycle C◦(Gk) of Gk, for all k ∈ {3, . . . , n};

(CO3) vk+1 is located in the outer face of Gk and its neighbors (in Gk) appear
consecutively along C◦(Gk), for all k ∈ {3, . . . , n− 1};

where Gk is the subgraph of G induced by v1, . . . , vk.

Figure 2.18 shows an example. Note that there are permutations that do not cor-
respond to a canonical order: for instance, when choosing the vertex 4 as the next
vertex to be removed in Figure 2.18b, the resulting graph G ′7 = G[{1, 2, 3, 5, 6, 7, 8}] is
not biconnected (because 1 is a cut-vertex).

1

2

3
4

5

6

7

8

9

10

11

(a) G.

1

2

3
4

5

6

7

8

9

10

11

(b) G8.

Figure 2.18: An internally triangulated plane graph with a canonical ordering.

Theorem 2.38. For every internally triangulated plane graph G and every edge {v1, v2}

on its outer face, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any order suffices and so
the statement holds. Hence consider an internally triangulated plane graph G = (V, E)
on n > 4 vertices. We claim that it is enough to select a vertex vn /∈ {v1, v2} on C◦(G)
that is not incident to a chord of C◦(G) and then apply induction on G \ {vn}.

We will show later that such a vertex vn always exists. First let us prove the claim.
We need to argue that if vn is selected as described

(i) the plane graph Gn−1 := G \ {vn} is internally triangulated,

(ii) the given edge {v1, v2} is on the outer face C◦(Gn−1) of Gn−1, and

(iii) we can extend the inductively obtained canonical ordering for Gn−1 with vn to
obtain a canonical ordering for G.

37

Chapter 2. Plane Embeddings Geometry: C&A 2019

Property (ii) is an immediate consequence of vn /∈ {v1, v2}.
Regarding (iii) note that (CO1) and (CO2) for k = n hold by assumption. For (CO3)

recall that G is plane and vn ∈ C◦(G). Hence all neighbors of vn in G must appear on
C◦(Gn−1). Consider the circular sequence of neighbors around vn in G and break it into
a linear sequence u1, . . . , um, for some m > 2, that starts and ends with the neighbors
of vn in C◦(G). As G is internally triangulated, each of the bounded faces spanned by
vn, ui, ui+1, for i ∈ {1, . . . ,m − 1}, is a triangle and hence {ui, ui+1} ∈ E. This implies
(CO3).

It remains to show (i). The way Gn−1 is obtained from G, every bounded face f
of Gn−1 also appears as a bounded face of G. As G is internally triangulated, f is a
triangle. It remains to show that Gn−1 is biconnected. The outer cycle C◦(Gn−1) of
Gn−1 is obtained from C◦(G) by removing vn and replacing it with the (possibly empty)
sequence u2, . . . , um−1. As vn is not incident to a chord of C◦(G) (and so neither
of u2, . . . , um−1 appeared along C◦(G) already), the resulting sequence forms a cycle,
indeed. Add a new vertex v in the outer face of Gn−1 and connect v to every vertex
of C◦(Gn−1) to obtain a maximal planar graph H ⊃ Gn−1. By Theorem 2.28 H is 3-
connected and so Gn−1 is biconnected, as desired. This also completes the proof of the
claim.

Next let us show that we can always find a vertex vn /∈ {v1, v2} on C◦(G) that is not
incident to a chord of C◦(G). If C◦(G) does not have any chord, this is obvious, because
every cycle has at least three vertices, one of which is neither v1 nor v2. So suppose that
C◦(G) has a chord c. The endpoints of c split C◦(G) into two paths, one of which does
not have v1 nor v2 as an internal vertex. Among all chords of C◦(G) select c such that
this path has minimal length. (It has always at least two edges, because there is always
at least one vertex “behind” a chord.) Then by definition of c this path is an induced
path in G and none of its (at least one) interior vertices is incident to a chord of C◦(G),
because such a chord would cross c. So we can select vn from these vertices. By the way
the path is selected with respect to c, this procedure does not select v1 nor v2.

Regarding the runtime bound, we maintain the following information for each vertex
v: whether it has been chosen already, whether it is on the outer face of the current
graph, and the number of incident chords with respect to the current outer cycle. Given
a combinatorial embedding of G, it is straighforward to initialize this information in
linear time. (Every edge is considered at most twice, once for each endpoint on the outer
face.) We also maintain an unsorted list of the eligible vertices, that is, those vertices
that are on the outer face and not incident to any chord. This list is straightforward to
maintain: Whenever a vertex information is updated, check before and after the update
whether it is eligible and correspondingly add it to or remove it from the list of eligible
vertices.

When removing a vertex, there are two cases: Either vn has two neighbors u1 and
u2 only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus, the
chord count for u1 and u2 has to be decremented by one. Otherwise, there are m > 3

neighbors u1, . . . , nm (Figure 2.19b) and (1) all vertices u2, . . . , um−1 are new on the
outer cycle, and (2) every edge incident to ui, for i ∈ {2, . . . ,m − 1}, and some other

38

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

vertex on the outer cycle other than ui−1 or ui+1 is a new chord (and the corresponding
counters at the endpoints have to by incremented by one).

vn

u1
u2

C◦(G)

(a)

vn

u1
u6

C◦(G)

(b)

Figure 2.19: Processing a vertex when computing a canonical ordering.

During the course of the algorithm every vertex appears once as a new vertex on the
outer face. At this point all incident edges are examined. Overall, every edge is inspected
at most twice—once for each endpoint—which takes linear time by Corollary 2.5.

Using one of the linear time planarity testing algorithms, we can obtain a combina-
torial embedding for a given maximal planar graph G. As every maximal plane graph
is internally triangulated, we can then use Theorem 2.38 to provide us with a canonical
ordering for G, in overall linear time.

Corollary 2.39. Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time.

Exercise 2.40. (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

(b) Give a family of internally triangulated plane graphs Gn on n = 2k vertices
with at least k! canonical orderings.

39

Chapter 2. Plane Embeddings Geometry: C&A 2019

Exercise 2.41. (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) on a grid of size (2n/3− 1)× (2n/3− 1) but
not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the embedding?

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.42 (Schnyder [26]). For every maximal planar graph G on at least three
vertices and every fixed face f of G, the multigraph obtained from G by doubling
the (three) edges of f can be partitioned into three spanning trees.

Exercise 2.43. Prove Theorem 2.42. Hint: Take a canonical ordering and build one
tree by taking for every vertex vk the edge to its first neighbor on the outer cycle
C◦(Gk−1).

Of a similar flavor is the following open problem, for which only partial answers for
specific types of point sets are known [1, 4].

Problem 2.44 (In memoriam Ferran Hurtado (1951–2014)).
Can every complete geometric graph on n = 2k vertices (the complete straight line graph
on a set of n points in general position) be partitioned into k plane spanning trees?

2.5.2 The Shift-Algorithm

Let (v1, . . . , vn) be a canonical ordering. The general plan is to construct an embedding
by inserting vertices in this order, starting from the triangle P(v1) = (0, 0), P(v3) = (1, 1),
P(v2) = (2, 0); see Figure 2.20.

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

Figure 2.20: Initialization of the shift algorithm.

At each step, some vertices will be shifted to the right, making room for the edges to
the freshly inserted vertex. For each vertex vi already embedded, maintain a set L(vi)
of vertices that move rigidly together with vi. Initially L(vi) = {vi}, for 1 6 i 6 3.

Ensure that the following invariants hold after Step k (that is, after vk has been
inserted):

(i) P(v1) = (0, 0), P(v2) = (2k− 4, 0);

40

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

(ii) The x-coordinates of the points on C◦(Gk) = (w1, . . . , wt), where w1 = v1 and
wt = v2, are strictly increasing (in this order)4;

(iii) each edge of C◦(Gk) is drawn as a straight-line segment with slope ±1.

Clearly these invariants hold for G3, embedded as described above. Invariant (i) implies
that after Step n we have P(v2) = (2n − 4, 0), while (iii) implies that the Manhattan
distance5 between any two points on C◦(Gk) is even.

Idea: put vk+1 at µ(wp, wq), where wp, . . . , wq are its neighbors on C◦(Gk) (recall that
they appear consecutively along C◦(Gk) by definition of a canonical ordering), where

µ((xp, yp), (xq, yq)) =
1

2
(xp − yp + xq + yq,−xp + yp + xq + yq)

is the point of intersection between the line `1 : y = x − xp + yp of slope 1 through
wp = (xp, yp) and the line `2 : y = xq − x+ yq of slope −1 through wq = (xq, yq).

Proposition 2.45. If the Manhattan distance between wp and wq is even, then µ(wp, wq)
is on the integer grid.

Proof. By Invariant (ii) we know that xp < xq. Suppose without loss of generality
that yp 6 yq. The Manhattan distance d of wp and wq is xq − xp + yq − yp, which by
assumption is an even number. Adding the even number 2xp to d yields the even number
xq + xp + yq − yp, half of which is the x-coordinate of µ((xp, yp), (xq, yq)). Adding the
even number 2yp to d yields the even number xq − xp + yq + yp, half of which is the
y-coordinate of µ((xp, yp), (xq, yq)).

After Step n we have P(vn) = (n− 2, n− 2), because vn is a neighbor of both v1 and
v2. However, P(vk+1) may not “see” all of wp, . . . , wq, in case that the slope of wpwp+1
is 1 and/or the slope of wq−1wq is −1 (Figure 2.21).

In order to resolve these problems we shift some points around so that after the shift
wp+1 does not lie on the line of slope 1 through wp and wq−1 does not lie on the line of
slope −1 through wq. The process of inserting vk+1 then looks as follows.

1. Shift
⋃q−1
i=p+1 L(wi) to the right by one unit.

2. Shift
⋃t
i=q L(wi) to the right by two units.

3. P(vk+1) := µ(wp, wq).

4. L(vk+1) := {vk+1} ∪
⋃q−1
i=p+1 L(wi).

4The notation is a bit sloppy here because both t and the wi in general depend on k. So in principle
we should write wki instead of wi. But as the k would just make a constant appearance throughout, we
omit it to avoid index clutter.

5The Manhattan distance of two points (x1, y1) and (x2, y2) is |x2 − x1|+ |y2 − y1|.

41

Chapter 2. Plane Embeddings Geometry: C&A 2019

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.21: (a) The new vertex vk+1 is adjacent to all of wp, . . . , wq. If we place
vk+1 at µ(wp, wq), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq−1 lies on the line of slope −1
through wq; (b) shifting wp+1, . . . , wq−1 by one and wq, . . . , wt by two
units to the right solves the problem.

Observe that the Manhattan distance betweenwp andwq remains even, because the shift
increases their x-difference by two and leaves the y-coordinates unchanged. Therefore
by Proposition 2.45 the vertex vk+1 is embedded on the integer grid.

The slopes of the edges wpwp+1 and wq−1wq (might be just a single edge, in case
that p+1 = q) become < 1 in absolute value, whereas the slopes of all other edges along
the outer cycle remain ±1. As all edges from vk+1 to wp+1, . . . , wq−1 have slope > 1 in
absolute value, and the edges vk+1wp and vk+1wq have slope ±1, each edge vk+1wi, for
i ∈ {p, . . . , q} intersects the outer cycle in exactly one point, which is wi. In other words,
adding all edges from vk+1 to its neighbors in Gk as straight-line segments results in a
plane drawing.

Next we argue that the invariants (i)–(iii) are maintained. For (i) note that we start
shifting with wp+1 only so that even in case that v1 is a neighbor of vk+1, it is never
shifted. On the other hand, v2 is always shifted by two, because we shift every vertex
starting from (and including) wq. Clearly both the shifts and the insertion of vk+1
maintain the strict order along the outer cycle, and so (ii) continues to hold. Finally,
regarding (iii) note that the edges wpwp+1 and wq−1wq (possibly this is just a single
edge) are the only edges on the outer cycle whose slope is changed by the shift. But these
edges do not appear on C◦(Gk+1) anymore. The two edges vk+1wp and vk+1wq incident
to the new vertex vk+1 that appear on C◦(Gk+1) have slope 1 and −1, respectively. So
all of (i)–(iii) are invariants of the algorithm, indeed.

So far we have argued about the shift with respect to vertices on the outer cycle of
Gk only. To complete the proof of Theorem 2.36 it remains to show that the drawing
remains plane under shifts also in its interior part.

Lemma 2.46. Let Gk, k > 3, be straight-line grid embedded as described, C◦(Gk) =
(w1, . . . , wt), and let δ1 6 . . . 6 δt be nonnegative integers. If for each i, we shift
L(wi) by δi to the right, then the resulting straight-line drawing is plane.

Proof. Induction on k. For G3 this is obvious. Let vk = w`, for some 1 < ` < t.

42

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

Construct a delta sequence ∆ for Gk−1 as follows. If vk has only two neighbors in Gk,
then C◦(Gk−1) = (w1, . . . , w`−1, w`+1, . . . , wt) and we set ∆ = δ1, . . . , δ`−1, δ`+1, . . . , δt.
Otherwise, C◦(Gk−1) = (w1, . . . , w`−1 = u1, . . . , um = w`+1, . . . , wt), where u1, . . . , um
are the m > 3 neighbors of vk in Gk. In this case we set

∆ = δ1, . . . , δ`−1, δ`, . . . , δ`︸ ︷︷ ︸
m−2 times

, δ`+1, . . . , δt .

Clearly, ∆ is monotonely increasing and by the inductive assumption a correspondingly
shifted drawing of Gk−1 is plane. When adding vk and its incident edges back, the
drawing remains plane: All vertices u2, . . . , um−1 (possibly none) move rigidly with (by
exactly the same amount as) vk by construction. Stretching the edges of the chain
w`−1, w`, w`+1 by moving w`−1 to the left and/or w`+1 to the right cannot create any
crossings.

Linear time. The challenge in implementing the shift algorithm efficiently lies in the
eponymous shift operations, which modify the x-coordinates of potentially many ver-
tices. In fact, it is not hard to see that a naive implementation—which keeps track
of all coordinates explicitly—may use quadratic time. De Fraysseix et al. described an
implementation of the shift algorithm that uses O(n logn) time. Then Chrobak and
Payne [10] observed how to improve the runtime to linear, using the following ideas.

Recall that P(vk+1) = (xk+1, yk+1), where

xk+1 =
1

2
(xp − yp + xq + yq) and

yk+1 =
1

2
(−xp + yp + xq + yq) =

1

2
((xq − xp) + yp + yq) . (2.47)

Thus,

xk+1 − xp =
1

2
((xq − xp) + yq − yp) . (2.48)

In other words, we need the y-coordinates of wp and wq together with the relative x-
position (offset) of wp and wq only to determine the y-coordinate of vk+1 and its offset
to wp.

Maintain the outer cycle as a rooted binary tree T , with root v1. For each node v of
T , the left child is the first vertex covered by insertion of v (if any), that is, wp+1 in
the terminology from above (if p+ 1 6= q), whereas the right child of v is the next node
along the outer cycle (if any; either along the current outer cycle or along the one at the
point where both points were covered together). See Figure 2.22 for an example.

At each node v of T we also store its x-offset dx(v) with respect to the parent node.
For the root v1 of the tree set dx(v1) = 0. In this way, a whole subtree (and, thus, a
whole set L(·)) can be shifted by changing a single offset entry at its root.

Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =
left(v2) = left(v3) = 0, right(v1) = v3, right(v2) = 0, and right(v3) = v2.

43

Chapter 2. Plane Embeddings Geometry: C&A 2019

(a)

vk+1

(b)

Figure 2.22: Maintaining the binary tree representation when inserting a new vertex
vk+1. Red (dashed) arrows point to left children, blue (solid) arrows
point to right children.

Inserting a vertex vk+1 works as follows. As before, let w1, . . . , wt denote the vertices
on the outer cycle C◦(Gk) and wp, . . . , wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (This implements the shift.)

2. Compute ∆pq =
∑q
i=p+1 dx(wi). (This is the total offset between wp and wq.)

3. Set dx(vk) ← 1
2
(∆pq + y(wq) − y(wp)) and y(vk) ← 1

2
(∆pq + y(wq) + y(wp)).

(This is exactly what we derived in (2.47) and (2.48).)

4. Set right(wp)← vk and right(vk)← wq. (Update the current outer cycle.)

5. If p+ 1 = q, then set left(vk)← 0; else set left(vk)← wp+1 and right(wq−1)← 0.
(Update L(vk+1), the part that is covered by insertion of vk+1.)

6. Set dx(wq)← ∆pq − dx(vk) and—unless p+ 1 = q—set dx(wp+1)← dx(wp+1) −
dx(vk). (Update the offsets according to the changes in the previous two steps.)

Observe that the only step that possibly cannot be executed in constant time is Step 2.
But all vertices but the last vertex wq for which we sum the offsets are covered by the
insertion of vk+1. As every vertex can be covered at most once, the overall complexity
of this step during the algorithm is linear. Therefore, this first phase of the algorithm
can be completed in linear time.

In a second phase, the final x-coordinates can be computed from the offsets by a
single recursive pre-order traversal of the tree. The (pseudo–)code given below is to be
called with the root vertex v1 and an offset of zero. Clearly this yields a linear time
algorithm overall.

compute_coordinate(Vertex v, Offset d) {
if (v == 0) return;
x(v) = dx(v) + d;

44

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

compute_coordinate(left(v), x(v));
compute_coordinate(right(v), x(v));

}

2.5.3 Remarks and Open Problems

From a geometric complexity point of view, Theorem 2.36 provides very good news
for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler’s Formula tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where n
is the number of vertices.

Now the shift algorithm tells us that for any planar graph we can even find a geometric
plane (straight-line) representation using O(n) space. In addition to the combinatorial
information, we only have to store 2n numbers from the range {0, 1, . . . , 2n− 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each address in memory contains a word of b
bits, which means that it can be used to represent any integer from {0, . . . , 2b − 1}. One
also assumes that b is sufficiently large, for instance, in our case b > logn.

There are also different models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . , n}.

Edge lengths. Theorem 2.36 shows that planar graphs admit a plane straight-line drawing
where all vertices have integer coordinates. It is an open problem whether a similar
statement can be made for edge lengths.

Problem 2.49 (Harborth’s Conjecture [16]). Every planar graph admits a plane straight-
line drawing where all Euclidean edge lengths are integral.

Without the planarity restriction such a drawing is possible because for every n ∈ N
one can find a set of n points in the plane, not all collinear, such that their distances are
all integral. In fact, such a set of points can be constructed to lie on a circle of integral
radius [2]. When mapping the vertices of Kn onto such a point set, all edge lengths are
integral. In the same paper it is also shown that there exists no infinite set of points
in the plane so that all distances are integral, unless all of these points are collinear.
Unfortunately, collinear point sets are not very useful for drawing graphs. The existence
of a dense subset of the plane where all distances are rational would resolve Harborth’s
Conjecture. However, it is not known whether such a set exists, and in fact the suspected
answer is “no”.

Problem 2.50 (Erdős–Ulam Conjecture [11]). There is no dense set of points in the plane
whose Euclidean distances are all rational.

45

Chapter 2. Plane Embeddings Geometry: C&A 2019

Generalizing the Fáry-Wagner Theorem. As discussed above, not every planar graph on n
vertices admits a plane straight-line embedding on every set of n points. But Theo-
rem 2.33 states that for every planar graph G on n vertices there exists a set P of n
points in the plane so that G admits a plane straight-line embedding on P (that is, so
that the vertices of G are mapped bijectively to the points in P). It is an open problem
whether this statement can be generalized to hold for several graphs, in the following
sense.

Problem 2.51. What is the largest number k ∈ N for which the following statement
holds? For every collection of k planar graphs G1, . . . , Gk on n vertices each, there exists
a set P of n points so that Gi admits a plane straight-line embedding on P, for every
i ∈ {1, . . . , k}.

By Theorem 2.33 we know that the statement holds for k = 1. Already for k = 2

it is not known whether the statement holds. However, it is known that k is finite.
Specifically, there exists a collection of 7, 393 planar graphs on 35 vertices each so that
for every set P of 35 points in the plane at least one of these graphs does not admit a
plane straight-line embedding on P [7]. Therefore we have k 6 7392.

Questions

1. What is an embedding? What is a planar/plane graph? Give the definitions
and explain the difference between planar and plane.

2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler’s formula and derive your answers from it.

3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated efficiently? Ex-
plain what it is, including the difference between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.27.

5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial plane embedding? Give
the definitions, explain and prove Whitney’s Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one find a canonical ordering efficiently? Give the
definition. State and prove Theorem 2.38.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.36.

46

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

References

[1] Oswin Aichholzer, Thomas Hackl, Matias Korman, Marc van Kreveld, Maarten
Löffler, Alexander Pilz, Bettina Speckmann, and EmoWelzl, Packing plane spanning
trees and paths in complete geometric graphs. Inform. Process. Lett., 124, (2017),
35–41.

[2] Norman H. Anning and Paul Erdős, Integral distances. Bull. Amer. Math. Soc.,
51, 8, (1945), 598–600.

[3] Bruce G. Baumgart, A polyhedron representation for computer vision. In Proc.
AFIPS Natl. Comput. Conf., vol. 44, pp. 589–596, AFIPS Press, Alrington, Va.,
1975.

[4] Prosenjit Bose, Ferran Hurtado, Eduardo Rivera-Campo, and David R. Wood, Par-
titions of complete geometric graphs into plane trees. Comput. Geom. Theory
Appl., 34, 2, (2006), 116–125.

[5] John M. Boyer and Wendy J. Myrvold, On the cutting edge: simplified O(n) pla-
narity by edge addition. J. Graph Algorithms Appl., 8, 3, (2004), 241–273.

[6] Sergio Cabello, Planar embeddability of the vertices of a graph using a fixed point
set is NP-hard. J. Graph Algorithms Appl., 10, 2, (2006), 353–363.

[7] Jean Cardinal, Michael Hoffmann, and Vincent Kusters, On universal point sets for
planar graphs. J. Graph Algorithms Appl., 19, 1, (2015), 529–547.

[8] Bernard Chazelle, Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6, 5, (1991), 485–524.

[9] Norishige Chiba and Takao Nishizeki, The Hamiltonian cycle problem is linear-time
solvable for 4-connected planar graphs. J. Algorithms, 10, 2, (1989), 187–211.

[10] Marek Chrobak and Thomas H. Payne, A linear-time algorithm for drawing a planar
graph on a grid. Inform. Process. Lett., 54, (1995), 241–246.

[11] Paul Erdős, Ulam, the man and the mathematician. J. Graph Theory, 9, 4, (1985),
445–449.

[12] István Fáry, On straight lines representation of planar graphs. Acta Sci. Math.
Szeged, 11, 4, (1948), 229–233.

[13] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl, Trémaux
trees and planarity. Internat. J. Found. Comput. Sci., 17, 5, (2006), 1017—-1030.

[14] Hubert de Fraysseix, János Pach, and Richard Pollack, How to draw a planar graph
on a grid. Combinatorica, 10, 1, (1990), 41–51.

47

https://doi.org/10.1016/j.ipl.2017.04.006
https://doi.org/10.1016/j.ipl.2017.04.006
https://doi.org/10.1090/S0002-9904-1945-08407-9
https://doi.org/10.1145/1499949.1500071
https://doi.org/10.1016/j.comgeo.2005.08.006
https://doi.org/10.1016/j.comgeo.2005.08.006
http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
http://jgaa.info/accepted/2006/Cabello2006.10.2.pdf
http://jgaa.info/accepted/2006/Cabello2006.10.2.pdf
https://dx.doi.org/10.7155/jgaa.00374
https://dx.doi.org/10.7155/jgaa.00374
https://doi.org/10.1007/BF02574703
https://doi.org/10.1016/0196-6774(89)90012-6
https://doi.org/10.1016/0196-6774(89)90012-6
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1002/jgt.3190090402
http://acta.fyx.hu/acta/showCustomerArticle.action?id=5919&dataObjectType=article&returnAction=showCustomerVolume
https://doi.org/10.1142/S0129054106004248
https://doi.org/10.1142/S0129054106004248
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/BF02122694

Chapter 2. Plane Embeddings Geometry: C&A 2019

[15] Leonidas J. Guibas and Jorge Stolfi, Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph., 4, 2,
(1985), 74–123.

[16] Heiko Harborth and Arnfried Kemnitz, Plane integral drawings of planar graphs.
Discrete Math., 236, 1–3, (2001), 191–195.

[17] John Hopcroft and Robert E. Tarjan, Efficient planarity testing. J. ACM, 21, 4,
(1974), 549–568.

[18] Ken ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed, The disjoint paths
problem in quadratic time. J. Combin. Theory Ser. B, 102, 2, (2012), 424–435.

[19] Lutz Kettner, Software design in computational geometry and contour-edge
based polyhedron visualization . Ph.D. thesis, ETH Zürich, Zürich, Switzerland,
1999.

[20] Kazimierz Kuratowski, Sur le problème des courbes gauches en topologie. Fund.
Math., 15, 1, (1930), 271–283.

[21] László Lovász, Graph minor theory. Bull. Amer. Math. Soc., 43, 1, (2006), 75–86.

[22] Bojan Mohar and Carsten Thomassen, Graphs on surfaces , Johns Hopkins Uni-
versity Press, Baltimore, 2001.

[23] David E. Muller and Franco P. Preparata, Finding the intersection of two convex
polyhedra. Theoret. Comput. Sci., 7, (1978), 217–236.

[24] János Pach and Rephael Wenger, Embedding planar graphs at fixed vertex locations.
Graphs Combin., 17, (2001), 717–728.

[25] Neil Robertson and Paul Seymour, Graph Minors. XX. Wagner’s Conjecture. J.
Combin. Theory Ser. B, 92, 2, (2004), 325–357.

[26] Walter Schnyder, Planar graphs and poset dimension. Order, 5, (1989), 323–343.

[27] Carsten Thomassen, Kuratowski’s Theorem. J. Graph Theory, 5, 3, (1981), 225–
241.

[28] William T. Tutte, A theorem on planar graphs. Trans. Amer. Math. Soc., 82, 1,
(1956), 99–116.

[29] Klaus Wagner, Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 46, (1936), 26–32.

[30] Klaus Wagner, Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114, 1,
(1937), 570–590.

48

https://doi.org/10.1145/282918.282923
https://doi.org/10.1145/282918.282923
https://doi.org/10.1016/S0012-365X(00)00442-8
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.3929/ethz-a-003861002
https://doi.org/10.3929/ethz-a-003861002
http://matwbn.icm.edu.pl/ksiazki/fm/fm15/fm15126.pdf
https://doi.org/10.1090/S0273-0979-05-01088-8
http://www.fmf.uni-lj.si/~mohar/Book.html
https://doi.org/10.1016/0304-3975(78)90051-8
https://doi.org/10.1016/0304-3975(78)90051-8
https://doi.org/10.1007/PL00007258
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1007/BF00353652
https://doi.org/10.1002/jgt.3190050304
https://doi.org/10.1090/S0002-9947-1956-0081471-8
http://eudml.org/doc/146109
https://doi.org/10.1007/BF01594196

Geometry: C&A 2019 2.5. Compact Straight-Line Drawings

[31] Kevin Weiler, Edge-based data structures for solid modeling in a curved surface
environment. IEEE Comput. Graph. Appl., 5, 1, (1985), 21–40.

[32] Hassler Whitney, Congruent graphs and the connectivity of graphs.Amer. J. Math.,
54, 1, (1932), 150–168.

49

https://doi.org/10.1109/MCG.1985.276271
https://doi.org/10.1109/MCG.1985.276271
http://www.jstor.org/stable/2371086

Chapter 3

Polygons

Although we can think of a line ` ⊂ R2 as an infinite point set that consists of all points
in R2 that are on `, there still exists a finite description for `. Such a description is, for
instance, provided by the three coefficients a, b, c ∈ R of an equation of the form ax +
by = c, with (a, b) 6= (0, 0). Actually this holds true for all of the fundamental geometric
objects that were mentioned in Chapter 1: Each of them has constant description
complexity (or, informally, just size), that is, it can be described by a constant1 number
of parameters.

In this course we will typically deal with objects that are not of constant size. Often
these are formed by merely aggregating constant-size objects, for instance, points to
form a finite set of points. But sometimes we also demand additional structure that goes
beyond aggregation only. Probably the most fundamental geometric objects of this type
are what we call polygons. You probably learned this term in school, but what is a
polygon precisely? Consider the examples shown in Figure 3.1. Are these all polygons?
If not, where would you draw the line?

(a) (b) (c) (d) (e) (f)

Figure 3.1: What is a polygon?

3.1 Classes of Polygons

Obviously, there is not the right answer to such a question and certainly there are
different types of polygons. Often the term polygon is used somewhat sloppily in place

1Unless specified differently, we will always assume that the dimension is (a small) constant. In a
high-dimensional space Rd, one has to account for a description complexity of Θ(d).

50

Geometry: C&A 2019 3.1. Classes of Polygons

of what we call a simple polygon, defined below.

Definition 3.1. A simple polygon is a compact region P ⊂ R2 that is bounded by a simple
closed curve γ : [0, 1]→ R2 that consists of a finite number of line segments. A curve
is a continuous map γ : [0, 1] → R2. A curve γ is closed, if γ(0) = γ(1) and it is
simple if it is injective on [0, 1), that is, the curve does not intersect itself.

Out of the examples shown above only Polygon 3.1a is simple. For each of the
remaining polygons it is impossible to combine the bounding segments into a simple
closed curve.

The term compact for subsets of Rd means bounded and closed. A subset of P ⊂ Rd
is bounded, if it is contained in the ball of radius r around the origin, for some finite
r > 0. Being closed means that the boundary is considered to be part of the polygon.
In order to formally define these terms, let us briefly review a few basic notions from
topology.

The standard topology of Rd is defined in terms of the Euclidean metric. A point
p ∈ Rd is interior to a set P ⊆ Rd, if there exists an ε-ball Bε(p) = {x ∈ Rd : ||x−p|| < ε}
around p, for some ε > 0, that is completely contained in P. A set is open, if all of its
points are interior; and it is closed, if its complement is open.

Exercise 3.2. Determine for each of the following sets whether they are open or closed
in R2. a) B1(0) b) {(1, 0)} c) R2 d) R2\Z2 e) R2\Q2 f) {(x, y) : x ∈ R, y > 0}

Exercise 3.3. Show that the union of countably many open sets in Rd is open. Show
that the union of a finite number of closed sets in Rd is closed. (These are two of
the axioms that define a topology. So the statements are needed to assert that the
metric topology is a topology, indeed.) What follows for intersections of open and
closed sets? Finally, show that the union of countably many closed sets in Rd is
not necessarily closed.

The boundary ∂P of a set P ⊂ Rd consists of all points that are neither interior to P
nor to its complement Rd \ P. By definition, for every p ∈ ∂P every ball Bε(p) contains
both points from P and from Rd\P. Sometimes one wants to consider a set P ⊂ Rd open
although it is not. In that case one can resort to the interior P◦ of P that is formed by
the subset of points interior to P. Similarly, the closure P of P is defined by P = P∪ ∂P.

Lower-dimensional objects, such as line segments in R2 or triangles in R3, do not
possess any interior point (because the ε-balls needed around any such point are full-
dimensional). Whenever we want to talk about the interior of a lower-dimensional set
S, we use the qualifier relative and write relint(S) to denote the interior of S relative to
the smallest affine subspace that contains S.

For instance, the smallest affine subspace that contains a line segment is a line and so
the relative interior of a line segment in R2 consists of all points except the endpoints,
just like for an interval in R1. Similarly, for a triangle in R3 the smallest affine subspace
that contains it is a plane. Hence its relative interior is just the interior of the triangle,
considered as a two-dimensional object.

51

Chapter 3. Polygons Geometry: C&A 2019

Exercise 3.4. Show that for any P ⊂ Rd the interior P◦ is open. (Why is there
something to show to begin with?) Show that for any P ⊂ Rd the closure P is
closed.

When describing a simple polygon P it is sufficient to describe only its boundary
∂P. As ∂P by definition is a simple closed curve γ that consists of finitely many line
segments, we can efficiently describe it as a sequence p1, . . . , pn of points, such that γ
is formed by the line segments p1p2, p2p3, . . . , pn−1pn, pnp1. These points are referred
to as the vertices of the polygon, and the segments connecting them are referred as the
edges of the polygon. The set of vertices of a polygon P is denoted by V(P), and the
set of edges of P is denoted by E(P).

Knowing the boundary, it is easy to tell apart the (bounded) interior from the (un-
bounded) exterior. This is asserted even for much more general curves by Theorem 2.1
(Jordan curve theorem). To prove this theorem in its full generality is surprisingly dif-
ficult. For simple polygons the situation is easier, though. The essential idea can be
worked out algorithmically, which we leave as an exercise.

Exercise 3.5. Describe an algorithm to decide whether a point lies inside or outside
of a simple polygon. More precisely, given a simple polygon P ⊂ R2 as a list of its
vertices (v1, v2, . . . , vn) in counterclockwise order and a query point q ∈ R2, decide
whether q is inside P, on the boundary of P, or outside. The runtime of your
algorithm should be O(n).

There are good reasons to ask for the boundary of a polygon to form a simple curve:
For instance, in the example depicted in Figure 3.1b there are several regions for which it
is completely unclear whether they should belong to the interior or to the exterior of the
polygon. A similar problem arises for the interior regions in Figure 3.1f. But there are
more general classes of polygons that some of the remaining examples fall into. We will
discuss only one such class here. It comprises polygons like the one from Figure 3.1d.

Definition 3.6. A region P ⊂ R2 is a simple polygon with holes if it can be described as
P = F \

⋃
H∈HH

◦, where H is a finite collection of pairwise disjoint simple polygons
(called holes) and F is a simple polygon for which F◦ ⊃ ⋃H∈HH.

The way this definition heavily depends on the notion of simple polygons makes it
straightforward to derive a similar trichotomy as the Jordan Curve Theorem provides
for simple polygons, that is, every point in the plane is either inside, or on the boundary,
or outside of P (exactly one of these three).

3.2 Polygon Triangulation

From a topological point of view, a simple polygon is nothing but a disk and so it is a very
elementary object. But geometrically a simple polygon can be—as if mocking the label
we attached to it—a pretty complicated shape, see Figure 3.2 for an example. While

52

Geometry: C&A 2019 3.2. Polygon Triangulation

there is an easy and compact one-dimensional representation in terms of the boundary,
as a sequence of vertices/points, it is often desirable to work with a more structured
representation of the whole two-dimensional shape.

Figure 3.2: A simple (?) polygon.

For instance, it is not straightforward to compute the area of a general simple polygon.
In order to do so, one usually describes the polygon in terms of simpler geometric objects,
for which computing the area is easy. Good candidates for such shapes are triangles,
rectangles, and trapezoids. Indeed, it is not hard to show that every simple polygon
admits a “nice” partition into triangles, which we call a triangulation.

Definition 3.7. A triangulation of a simple polygon P with vertex set V(P) is a collection
T of triangles, such that

(1) P =
⋃
T∈T T ;

(2) V(P) =
⋃
T∈T V(T); and

(3) for every distinct pair T,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Exercise 3.8. Show that each condition in Definition 3.7 is necessary in the following
sense: Give an example of a non-triangulation that would form a triangulation if
the condition was omitted. Is the definition equivalent if (3) is replaced by T◦∩U◦ =
∅, for every distinct pair T,U ∈ T?

If we are given a triangulation of a simple polygon P it is easy to compute the area of
P by simply summing up the area of all triangles from T. Triangulations are an incredibly
useful tool in planar geometry, and one reason for their importance is that every simple
polygon admits one.

Theorem 3.9. Every simple polygon has a triangulation.

Proof. Let P be a simple polygon on n vertices. We prove the statement by induction on
n. For n = 3 we face a triangle P that is a triangulation by itself. For n > 3 consider the
lexicographically smallest vertex v of P, that is, among all vertices of P with a smallest x-
coordinate the one with smallest y-coordinate. Denote the neighbors of v (next vertices)
along ∂P by u and w. Consider the line segment uw. We distinguish two cases.

53

Chapter 3. Polygons Geometry: C&A 2019

Case 1: except for its endpoints u and w, the segment uw lies completely in P◦.
Then uw splits P into two smaller polygons, the triangle uvw and a simple polygon P ′

on n− 1 vertices (Figure 3.3a). By the inductive hypothesis, P ′ has a triangulation that
together with T yields a triangulation of P.

v

u

w

(a) Case 1.

v

u

w

p

(b) Case 2.

Figure 3.3: Cases in the proof of Theorem 3.9.

Case 2: relint(uw) 6⊂ P◦ (Figure 3.3b). By choice of v, the polygon P is contained in
the closed halfplane to the right of the vertical line through v. Therefore, as the segments
uv and vw are part of a simple closed curve defining ∂P, every point sufficiently close to
v and between the rays vu and vw must be in P◦.

On the other hand, since relint(uw) 6⊂ P◦, there is some point from ∂P in the interior
of the triangle T = uvw (by the choice of v the points u, v,w are not collinear and so T
is a triangle, indeed) or on the line segment uw. In particular, as ∂P is composed of line
segments, there is a vertex of P in T◦ or on uw (otherwise, a line segment would have to
intersect the line segment uw twice, which is impossible). Among all such vertices select
p to be one that is furthest from the line uw. Then the open line segment relint(vp) is
contained in T◦ and, thus, it splits P into two polygons P1 and P2 on less than n vertices
each (in one of them, u does not appear as a vertex, whereas w does not appear as a
vertex in the other). By the inductive hypothesis, both P1 and P2 have triangulations
and their union yields a triangulation of P.

Exercise 3.10. In the proof of Theorem 3.9, would the argument in Case 2 also work
if the point p was chosen to be a vertex of P in T◦ that is closest to v (in Euclidean
distance)?

The configuration from Case 1 above is called an ear : three consecutive vertices
u, v,w of a simple polygon P such that the relative interior of uw lies in P◦. In fact, we
could have skipped the analysis for Case 2 by referring to the following theorem.

Theorem 3.11 (Meisters [13, 14]). Every simple polygon that is not a triangle has two
non-overlapping ears, that is, two ears A and B such that A◦ ∩ B◦ = ∅.

But knowing Theorem 3.9 we can obtain Theorem 3.11 as a direct consequence of
the following

54

Geometry: C&A 2019 3.2. Polygon Triangulation

Theorem 3.12. Every triangulation of a simple polygon on n > 4 vertices contains at
least two (triangles that are) ears.

Exercise 3.13. Prove Theorem 3.12.

Exercise 3.14. Let P be a simple polygon with vertices v1, v2, . . . , vn (in counterclock-
wise order), where vi has coordinates (xi, yi). Show that the area of P is

1

2

n∑
i=1

xiyi+1 − xi+1yi,

where (xn+1, yn+1) = (x1, y1).

The number of edges and triangles in a triangulation of a simple polygon are com-
pletely determined by the number of vertices, as the following simple lemma shows.

Lemma 3.15. Every triangulation of a simple polygon on n > 3 vertices consists of
n− 2 triangles and 2n− 3 edges.

Proof. Proof by induction on n. The statement is true for n = 3. For n > 3 consider
a simple polygon P on n vertices and an arbitrary triangulation T of P. Any edge uv in
T that is not an edge of P (and there must be such an edge because P is not a triangle)
partitions P into two polygons P1 and P2 with n1 and n2 vertices, respectively. Since
n1, n2 < n we conclude by the inductive hypothesis that T partitions P1 into n1 − 2
triangles and P2 into n2 − 2 triangles, using 2n1 − 3 and 2n2 − 3 edges, respectively.

All vertices of P appear in exactly one of P1 or P2, except for u and v, which appear in
both. Therefore n1+n2 = n+2 and so the number of triangles in T is (n1−2)+(n2−2) =
(n1 + n2) − 4 = n+ 2− 4 = n− 2. Similarly, all edges of T appear in exactly one of P1
or P2, except for the edge uv, which appears in both. Therefore the number of edges in
T is (2n1 − 3) + (2n2 − 3) − 1 = 2(n1 + n2) − 7 = 2(n+ 2) − 7 = 2n− 3.

The universal presence of triangulations is something particular about the plane:
The natural generalization of Theorem 3.9 to dimension three and higher does not hold.
What is this generalization, anyway?

Tetrahedralizations in R3. A simple polygon is a planar object that is a topological disk
that is locally bounded by patches of lines. The corresponding term inR3 is a polyhedron,
and although we will not formally define it here yet, a literal translation of the previous
sentence yields an object that topologically is a ball and is locally bounded by patches
of planes. A triangle in R2 corresponds to a tetrahedron in R3 and a tetrahedralization
is a nice partition into tetrahedra, where “nice” means that the union of the tetrahedra
covers the object, the vertices of the tetrahedra are vertices of the polyhedron, and any
two distinct tetrahedra intersect in either a common triangular face, or a common edge,
or a common vertex, or not at all.2

2These “nice” subdivisions can be defined in an abstract combinatorial setting, where they are called
simplicial complices.

55

Chapter 3. Polygons Geometry: C&A 2019

Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization. The
following construction is due to Schönhardt [17]. It is based on a triangular prism, that
is, two congruent triangles placed in parallel planes where the corresponding sides of both
triangles are connected by a rectangle (Figure 3.4a). Then one triangle is twisted/rotated
slightly within its plane. As a consequence, the rectangular faces are not plane anymore,
but they obtain an inward dent along their diagonal in direction of the rotation (Fig-
ure 3.4b). The other (former) diagonals of the rectangular faces—labeled ab ′, bc ′, and

(a)

a

b

c

a ′ c ′

b ′

(b)

Figure 3.4: The Schönhardt polyhedron cannot be subdivided into tetrahedra without
adding new vertices.

ca ′ in Figure 3.4b—are now epigonals, that is, they lie in the exterior of the polyhedron.
Since these epigonals are the only edges between vertices that are not part of the poly-
hedron, there is no way to add edges to form a tetrahedron for a subdivision. Clearly
the polyhedron is not a tetrahedron by itself, and so we conclude that it does not admit
a subdivision into tetrahedra without adding new vertices. Actually, it is NP-complete
to decide whether a non-convex polyhedron has a tetrahedralization [15]. If adding new
vertices—so-called Steiner vertices—is allowed, then there is no problem to construct
a tetrahedralization, and this holds true in general. Even if a tetrahedralization of a
polyhedron exists, there is another significant difference to polygons in R2. While the
number of triangles in a triangulation of a polygon depends only on the number of ver-
tices, the number of tetrahedra in two different tetrahedralization of the same polyhedron
may be different. See Figure 3.5 for a simple example of a polyhedron that has tetrahe-
dralization with two or three tetrahedra. Deciding whether a convex polyhedron has a
tetrahedralization with at most a given number of tetrahedra is NP-complete [6].

Exercise 3.16. Characterize all possible tetrahedralizations of the three-dimensional
cube.

Algorithms. Knowing that a triangulation exists is nice, but it is much better to know
that it can also be constructed efficiently.

56

Geometry: C&A 2019 3.2. Polygon Triangulation

t

b

t

b

Figure 3.5: Two tetrahedralizations of the same polyhedron, a triangular bipyramid.
The left partition uses two polyhedra; both the top vertex t and the bottom
vertex b belong to only one tetrahedron. The right partition uses three
polyhedra that all share the dashed diagonal bt.

Exercise 3.17. Convert Theorem 3.9 into an O(n2) time algorithm to construct a
triangulation for a given simple polygon on n vertices.

The runtime achieved by the straightforward application of Theorem 3.9 is not op-
timal. We will revisit this question at several times during this course3 and discuss
improved algorithms for the problem of triangulating a simple polygon.

The best (in terms of worst-case runtime) algorithm known due to Chazelle [7] com-
putes a triangulation in linear time. But this algorithm is very complicated and we will
not discuss it here. There is also a somewhat simpler randomized algorithm to compute
a triangulation in expected linear time [4], which we will not discuss in detail, either.
The question of whether there exists a simple (which is not really a well-defined term,
of course, except that Chazelle’s Algorithm does not qualify) deterministic linear time
algorithm to triangulate a simple polygon remains open [10].

Polygons with holes. It is interesting to note that the complexity of the triangulation
problem changes to Θ(n logn), if the polygon may contain holes [5]. This means that
there is an algorithm to construct a triangulation for a given simple polygon with holes
on a total of n vertices (counting both the vertices on the outer boundary and those of
holes) in O(n logn) time. But there is also a lower bound of Ω(n logn) operations that
holds in all models of computation in which there exists a corresponding lower bound
for comparison-based sorting. This difference in complexity is a very common pattern:
There are many problems that are (sometimes much) harder for simple polygons with
holes than for simple polygons. So maybe the term “simple” has some justification, after
all. . .

3This is actually not true in this iteration of the course. But in the full version of the lecture notes you
can find the corresponding material in the appendix, in chapters A and C.

57

Chapter 3. Polygons Geometry: C&A 2019

General triangle covers. What if we drop the “niceness” conditions required for triangu-
lations and just want to describe a given simple polygon as a union of triangles? It
turns out this is a rather drastic change and, for instance, it is unlikely that we can
efficiently find an optimal/minimal description of this type: Christ has shown [8] that it
is NP-hard to decide whether for a simple polygon P on n vertices and a positive integer
k, there exists a set of at most k triangles whose union is P. In fact, the problem is not
even known to be in NP, because it is not clear whether the coordinates of solutions can
always be encoded compactly.

3.3 The Art Gallery Problem

In 1973 Victor Klee posed the following question: “How many guards are necessary, and
how many are sufficient to patrol the paintings and works of art in an art gallery with n
walls?” From a geometric point of view, we may think of an “art gallery with n walls” as
a simple polygon bounded by n edges, that is, a simple polygon P with n vertices. And
a guard can be modeled as a point where we imagine the guard to stand and observe
everything that is in sight. In sight, finally, refers to the walls of the gallery (edges of
the polygon) that are opaque and, thus, prevent a guard to see what is behind. In other
words, a guard (point) g can watch over every point p ∈ P, for which the line segment
gp lies completely in P◦, see Figure 3.6.

g

Figure 3.6: The region that a guard g can observe.

It is not hard to see that bn/3c guards are necessary in general.

Exercise 3.18. Describe a family (Pn)n>3 of simple polygons such that Pn has n vertices
and at least bn/3c guards are needed to guard it.

What is more surprising: bn/3c guards are always sufficient as well. Chvátal [9] was
the first to prove that, but then Fisk [11] gave a much simpler proof using—you may
have guessed it—triangulations. Fisk’s proof was considered so beautiful that it was
included into “Proofs from THE BOOK” [3], a collection inspired by Paul Erdős’ belief
in “a place where God keeps aesthetically perfect proofs”. The proof is based on the
following lemma.

58

Geometry: C&A 2019 3.4. Optimal Guarding

Lemma 3.19. Every triangulation of a simple polygon is 3-colorable. That is, each
vertex can be assigned one of three colors in such a way that adjacent vertices
receive different colors.

Proof. Induction on n. For n = 3 the statement is obvious. For n > 3, by Theorem 3.12
the triangulation contains an ear uvw. Cutting off the ear creates a triangulation of a
polygon on n − 1 vertices, which by the inductive hypothesis admits a 3-coloring. Now
whichever two colors the vertices u and w receive in this coloring, there remains a third
color to be used for v.

Figure 3.7: A triangulation of a simple polygon on 17 vertices and a 3-coloring of it.
The vertices shown solid orange form the smallest color class and guard
the polygon using b17/3c = 5 guards.

Theorem 3.20 (Fisk [11]). Every simple polygon on n vertices can be guarded using at
most bn/3c guards.

Proof. Consider a triangulation of the polygon and a 3-coloring of the vertices as ensured
by Lemma 3.19. Take the smallest color class, which clearly consists of at most bn/3c
vertices, and put a guard at each vertex. As every point of the polygon is contained in
at least one triangle and every triangle has exactly one vertex in the guarding set, the
whole polygon is guarded.

3.4 Optimal Guarding

While Exercise 3.18 shows that the bound in Theorem 3.20 is tight in general, it is easy
to see that Fisk’s method does not necessarily minimize the number of guards. Also,
it is natural to lift the restriction that guards can be placed at vertices only, and allow
guards to be placed anywhere on the boundary or even anywhere in the interior of the
polygon. In all these variants, we can ask for the minimum number of guards required
to guard a given polygon P. These problems have been shown to be NP-hard by Lee
and Lin [12] already in the 1980s. However, if the guards are not constrained to lie on
vertices, it is not clear whether the corresponding decision problem actually is in NP. In

59

Chapter 3. Polygons Geometry: C&A 2019

g`

gm gr

Figure 3.8: To guard this polygon with three guards, there must be one guard on each
of the green dashed segments. The middle guard gm must be to the left of
the blue curve, to the right of the red curve, and on the dashed green line.
The intersection point of these three curves has irrational coordinates.

fact, recent results by Abrahamsen et al. suggest that this is unlikely to be the case. In
the remainder of this section we will briefly discuss some of these results.

Recall that, to show that a problem is in NP, one usually describes a certificate that
allows to verify a solution for any problem instance in polynomial time. If we restrict the
guards to be on vertices, a natural certificate for a solution is the set of vertices on which
we place guards. In the general problem, a natural candidate for a certificate are the
coordinates of the guards. Since no more than bn/3c guards are required, this seems a
reasonable certificate. But what if the number of bits needed to explicitly represent these
coordinates are exponential in n? One might be tempted to think that any reasonable
guard can be placed at an intersection point of some lines that are defined by polygon
vertices. Alas, in general this is not correct: some guards with irrational coordinates may
be required, even if all vertices of P have integral coordinates. This surprising result has
been presented in 2017 and we will sketch its main ideas, referring to the paper by
Abrahamsen, Adamaszek, and Miltzow [1] for more details and the exact construction.

Consider the polygon shown in Figure 3.8, which consists of a main rectangular
region with triangular, rectangular, and trapezoidal regions attached. We will argue
that, if this polygon is guarded with less than four guards, at least one of the guards
has an irrational coordinate. The polygon contains three pairs of triangular regions
with the following structure. Each pair is connected by a green dashed segment in the
figure. This segment contains one edge of each of the two triangles and separates their
interiors. Hence, a single guard that sees both of these triangles has to be placed on
this separating segment. Further, there is no other point that can guard two of these
six triangles. Therefore, if we have only three guards, each of them must be placed on
one of these three disjoint segments. The small rectangular regions to the left, top, and
bottom outside the main rectangular region further constrain the positions of the guards
along these segments.

Let the guards be g`, gm, and gr, as in the figure. The guard g` cannot see all the
points inside the left two trapezoidal regions, and thus gm has to be placed appropriately.

60

Geometry: C&A 2019 3.4. Optimal Guarding

For each position of g` on its segment, we get a unique rightmost position on which a
second guard can be placed to guard the two trapezoids. The union of these points defines
an arc that is a segment of a quadratic curve (the roots of a quadratic polynomial). We
get an analogous curve for gr and the two trapezoids attached to the right. By a careful
choice of the vertex coordinates, these two curves cross at a point p that also lies on the
segment for the guard gm and has irrational coordinates. It then follows from a detailed
argument (see [1]) that p is the only feasible placement of gm. Let us point out that the
choice of the vertex coordinates to achieve this is far from trivial. For example, there
can only be a single line defined by two points with rational coordinates that passes
through p, and this is the line on which the guard gm is constrained to lie on.

Exercise 3.21. Let P be a polygon with vertices on the integer grid, and let g be a
point inside that polygon with at least one irrational coordinate. Show that there
can be at most one diagonal of P passing through g.

Nevertheless, the sketched construction leads to the following result.

Theorem 3.22 (Abrahamsen et al. [1]). For any k, there is a simple polygon P with
integer vertex coordinates such that P can be guarded by 3k guards, while a guard
set having only rational coordinates requires 4k guards.

Abrahamsen, Adamaszek, and Miltzow [2] showed recently that the art gallery prob-
lem is actually complete in a complexity class called ∃R. The existential theory of
the reals (see [16] for details) is the set of true sentences of the form ∃x1, . . . , xn ∈
R : φ(x1, . . . , xn) for a quantifier-free Boolean formula φ without negation that can use
the constants 0 and 1, as well as the operators +, ∗, and <. For example, ∃x, y : (x <
y) ∧ (x ∗ y < 1 + 1) is such a formula. A problem is in the complexity class ∃R if it
allows for a polynomial-time reduction to the problem of deciding such formulas, and it
is complete if in addition every problem in ∃R can be reduced to it by a polynomial-time
reduction.

For the art gallery problem, the result by Abrahamsen et al. [2] implies that the
coordinates of an optimal guard set may be doubly-exponential in the input size. This
statement does not exclude the possibility of a more concise, implicit way to express the
existence of an optimal solution. However, if we found such a way, then this would imply
that the art gallery problem is in NP, which, in turn, would imply NP = ∃R.

Questions

8. What is a simple polygon/a simple polygon with holes? Explain the definitions
and provide some examples of members and non-members of the respective classes.
For a given polygon you should be able to tell which of these classes it belongs to
or does not belong to and argue why this is the case.

61

Chapter 3. Polygons Geometry: C&A 2019

9. What is a closed/open/bounded set in Rd? What is the interior/closure of a
point set? Explain the definitions and provide some illustrative examples. For a
given set you should be able to argue which of the properties mentioned it possesses.

10. What is a triangulation of a simple polygon? Does it always exist? Explain the
definition and provide some illustrative examples. Present the proof of Theorem 3.9
in detail.

11. How about higher dimensional generalizations? Can every polyhedron in R3

be nicely subdivided into tetrahedra? Explain Schönhardt’s construction.

12. How many points are needed to guard a simple polygon? Present the proofs of
Theorem 3.12, Lemma 3.19, and Theorem 3.20 in detail.

13. Is there a compact representation for optimal guard placements? State Theo-
rem 3.22 and sketch the construction.

References

[1] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow, Irrational guards
are sometimes needed. In Proc. 33rd Internat. Sympos. Comput. Geom., pp.
3:1–3:15, 2017.

[2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow, The art gallery prob-
lem is ∃R-complete. In Proc. 50th Annu. ACM Sympos. Theory Comput., pp.
65–73, 2018.

[3] Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK , Springer-Verlag,
Berlin, 3rd edn., 2003.

[4] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos, A randomized algo-
rithm for triangulating a simple polygon in linear time. Discrete Comput. Geom.,
26, 2, (2001), 245–265.

[5] Takao Asano, Tetsuo Asano, and Ron Y. Pinter, Polygon triangulation: efficiency
and minimality. J. Algorithms, 7, 2, (1986), 221–231.

[6] Alexander Below, Jesús A. De Loera, and Jürgen Richter-Gebert, The complexity
of finding small triangulations of convex 3-polytopes. J. Algorithms, 50, 2, (2004),
134–167.

[7] Bernard Chazelle, Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6, 5, (1991), 485–524.

[8] Tobias Christ, Beyond triangulation: covering polygons with triangles. In Proc.
12th Algorithms and Data Struct. Sympos., vol. 6844 of Lecture Notes Comput.
Sci., pp. 231–242, Springer-Verlag, 2011.

62

https://doi.org/10.4230/LIPIcs.SoCG.2017.3
https://doi.org/10.4230/LIPIcs.SoCG.2017.3
https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/3188745.3188868
https://www.springer.com/us/book/9783662442043
https://doi.org/10.1007/s00454-001-0027-x
https://doi.org/10.1007/s00454-001-0027-x
https://doi.org/10.1016/0196-6774(86)90005-2
https://doi.org/10.1016/0196-6774(86)90005-2
https://doi.org/10.1016/S0196-6774(03)00092-0
https://doi.org/10.1016/S0196-6774(03)00092-0
https://doi.org/10.1007/BF02574703
https://doi.org/10.1007/978-3-642-22300-6_20

Geometry: C&A 2019 3.4. Optimal Guarding

[9] Václav Chvátal, A combinatorial theorem in plane geometry. J. Combin. Theory
Ser. B, 18, 1, (1975), 39–41.

[10] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke, The Open Problems
Project, Problem #10. http://cs.smith.edu/~orourke/TOPP/P10.html.

[11] Steve Fisk, A short proof of Chvátal’s watchman theorem. J. Combin. Theory Ser.
B, 24, 3, (1978), 374.

[12] Der-Tsai Lee and Arthur K. Lin, Computational complexity of art gallery problems.
IEEE Trans. Inform. Theory, 32, 2, (1986), 276–282.

[13] Gary H. Meisters, Polygons have ears. Amer. Math. Monthly, 82, 6, (1975), 648–
651.

[14] Gary H. Meisters, Principal vertices, exposed points, and ears. Amer. Math.
Monthly, 87, 4, (1980), 284–285.

[15] Jim Ruppert and Raimund Seidel, On the difficulty of triangulating three-
dimensional nonconvex polyhedra. Discrete Comput. Geom., 7, (1992), 227–253.

[16] Marcus Schaefer, Complexity of some geometric and topological problems. In Proc.
17th Int. Sympos. Graph Drawing (GD 2009), pp. 334–344, 2009.

[17] Erich Schönhardt, Über die Zerlegung von Dreieckspolyedern in Tetraeder. Math.
Ann., 98, (1928), 309–312.

63

https://doi.org/10.1016/0095-8956(75)90061-1
http://cs.smith.edu/~orourke/TOPP/P10.html
https://doi.org/10.1016/0095-8956(78)90059-X
https://doi.org/10.1109/TIT.1986.1057165
http://www.jstor.org/stable/2319703
http://www.jstor.org/stable/2321563
https://doi.org/10.1007/BF02187840
https://doi.org/10.1007/BF02187840
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1007/BF01451597

Chapter 4

Convex Hull

There exists an incredible variety of point sets and polygons. Among them, some have
certain properties that make them “nicer” than others in some respect. For instance,
look at the two polygons shown below.

(a) A convex polygon. (b) A non-convex polygon.

Figure 4.1: Examples of polygons: Which do you like better?

As it is hard to argue about aesthetics, let us take a more algorithmic stance. When
designing algorithms, the polygon shown on the left appears much easier to deal with
than the visually and geometrically more complex polygon shown on the right. One
particular property that makes the left polygon nice is that one can walk between any
two vertices along a straight line without ever leaving the polygon. In fact, this statement
holds true not only for vertices but for any two points within the polygon. A polygon
or, more generally, a set with this property is called convex.

Definition 4.1. A set P ⊆ Rd is convex if pq ⊆ P, for any p, q ∈ P.

An alternative, equivalent way to phrase convexity would be to demand that for every
line ` ⊂ Rd the intersection `∩P be connected. The polygon shown in Figure 4.1b is not
convex because there are some pairs of points for which the connecting line segment is not
completely contained within the polygon. An immediate consequence of the definition
is the following

64

Geometry: C&A 2019 4.1. Convexity

Observation 4.2. For any family (Pi)i∈I of convex sets, the intersection
⋂
i∈I Pi is

convex.

Indeed there are many problems that are comparatively easy to solve for convex sets
but very hard in general. We will encounter some particular instances of this phenomenon
later in the course. However, not all polygons are convex and a discrete set of points is
never convex, unless it consists of at most one point only. In such a case it is useful to
make a given set P convex, that is, approximate P with or, rather, encompass P within
a convex set H ⊇ P. Ideally, H differs from P as little as possible, that is, we want H to
be a smallest convex set enclosing P.

At this point let us step back for a second and ask ourselves whether this wish makes
sense at all: Does such a set H (always) exist? Fortunately, we are on the safe side
because the whole space Rd is certainly convex. It is less obvious, but we will see below
that H is actually unique. Therefore it is legitimate to refer to H as the smallest convex
set enclosing P or—shortly—the convex hull of P.

4.1 Convexity

In this section we will derive an algebraic characterization of convexity. Such a charac-
terization allows to investigate convexity using the machinery from linear algebra.

Consider P ⊂ Rd. From linear algebra courses you should know that the linear hull

lin(P) :=

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N ∧ ∀ i ∈ {1, . . . , n} : pi ∈ P, λi ∈ R
}

is the set of all linear combinations of P (smallest linear subspace containing P). For
instance, if P = {p} ⊂ R2 \ {0} then lin(P) is the line through p and the origin.

Similarly, the affine hull

aff(P) :=

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N ∧ ∀ i ∈ {1, . . . , n} : pi ∈ P, λi ∈ R ∧

n∑
i=1

λi = 1

}

is the set of all affine combinations of P (smallest affine subspace containing P). For
instance, if P = {p, q} ⊂ R2 and p 6= q then aff(P) is the line through p and q.

It turns out that convexity can be described in a very similar way algebraically, which
leads to the notion of convex combinations.

Proposition 4.3. A set P ⊆ Rd is convex if and only if
∑n
i=1 λipi ∈ P, for all n ∈ N,

p1, . . . , pn ∈ P, and λ1, . . . , λn > 0 with
∑n
i=1 λi = 1.

Proof. “⇐”: obvious with n = 2.
“⇒”: Induction on n. For n = 1 the statement is trivial. For n > 2, let pi ∈ P

and λi > 0, for 1 6 i 6 n, and assume
∑n
i=1 λi = 1. We may suppose that λi > 0,

65

Chapter 4. Convex Hull Geometry: C&A 2019

for all i. (Simply omit those points whose coefficient is zero.) We need to show that∑n
i=1 λipi ∈ P.
Define λ =

∑n−1
i=1 λi and for 1 6 i 6 n − 1 set µi = λi/λ. Observe that µi > 0

and
∑n−1
i=1 µi = 1. By the inductive hypothesis, q :=

∑n−1
i=1 µipi ∈ P, and thus by

convexity of P also λq + (1 − λ)pn ∈ P. We conclude by noting that λq + (1 − λ)pn =

λ
∑n−1
i=1 µipi + λnpn =

∑n
i=1 λipi.

Definition 4.4. The convex hull conv(P) of a set P ⊆ Rd is the intersection of all convex
supersets of P.

At first glance this definition is a bit scary: There may be a whole lot of supersets
for any given P and it is not clear that taking the intersection of all of them yields
something sensible to work with. However, by Observation 4.2 we know that the resulting
set is convex, at least. The missing bit is provided by the following proposition, which
characterizes the convex hull in terms of exactly those convex combinations that appeared
in Proposition 4.3 already.

Proposition 4.5. For any P ⊆ Rd we have

conv(P) =

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N ∧

n∑
i=1

λi = 1 ∧ ∀i ∈ {1, . . . , n} : λi > 0∧ pi ∈ P
}
.

The elements of the set on the right hand side are referred to as convex combinations
of P.

Proof. “⊇”: Consider a convex set C ⊇ P. By Proposition 4.3 (only-if direction) the
right hand side is contained in C. As C was arbitrary, the claim follows.

“⊆”: Denote the set on the right hand side by R. Clearly R ⊇ P. We show that R
forms a convex set. Let p =

∑n
i=1 λipi and q =

∑n
i=1 µipi be two convex combinations.

(We may suppose that both p and q are expressed over the same pi by possibly adding
some terms with a coefficient of zero.)

Then for λ ∈ [0, 1] we have λp + (1 − λ)q =
∑n
i=1(λλi + (1 − λ)µi)pi ∈ R, as

λλi︸︷︷︸
>0

+(1− λ)︸ ︷︷ ︸
>0

µi︸︷︷︸
>0

> 0, for all 1 6 i 6 n, and
∑n
i=1(λλi+(1−λ)µi) = λ+(1−λ) = 1.

In linear algebra the notion of a basis in a vector space plays a fundamental role. In
a similar way we want to describe convex sets using as few entities as possible, which
leads to the notion of extremal points, as defined below.

Definition 4.6. The convex hull of a finite point set P ⊂ Rd forms a convex polytope.
Each p ∈ P for which p /∈ conv(P \ {p}) is called a vertex of conv(P). A vertex of
conv(P) is also called an extremal point of P. A convex polytope in R2 is called a
convex polygon.

66

Geometry: C&A 2019 4.2. Classic Theorems for Convex Sets

Essentially, the following proposition shows that the term vertex above is well defined.

Proposition 4.7. A convex polytope in Rd is the convex hull of its vertices.

Proof. Let P = {p1, . . . , pn}, n ∈ N, such that without loss of generality p1, . . . , pk
are the vertices of P := conv(P). We prove by induction on n that conv(p1, . . . , pn) ⊆
conv(p1, . . . , pk). For n = k the statement is trivial.

For n > k, pn is not a vertex of P and hence pn can be expressed as a convex
combination pn =

∑n−1
i=1 λipi. Thus for any x ∈ P we can write x =

∑n
i=1 µipi =∑n−1

i=1 µipi+µn
∑n−1
i=1 λipi =

∑n−1
i=1 (µi+µnλi)pi. As

∑n−1
i=1 (µi+µnλi) = 1, we conclude

inductively that x ∈ conv(p1, . . . , pn−1) ⊆ conv(p1, . . . , pk).

4.2 Classic Theorems for Convex Sets

Next we will discuss a few fundamental theorems about convex sets in Rd. The proofs
typically use the algebraic characterization of convexity and then employ some techniques
from linear algebra.

Theorem 4.8 (Radon [9]). Any set P ⊂ Rd of d + 2 points can be partitioned into two
disjoint subsets P1 and P2 such that conv(P1) ∩ conv(P2) 6= ∅.
Proof. Let P = {p1, . . . , pd+2}. No more than d + 1 points can be affinely independent
in Rd. Hence suppose without loss of generality that pd+2 can be expressed as an affine
combination of p1, . . . , pd+1, that is, there exist λ1, . . . , λd+1 ∈ R with

∑d+1
i=1 λi = 1

and
∑d+1
i=1 λipi = pd+2. Let P1 be the set of all points pi for which λi is positive and

let P2 = P \ P1. Then setting λd+2 = −1 we can write
∑
pi∈P1 λipi =

∑
pi∈P2 −λipi,

where all coefficients on both sides are non-negative. Since
∑i=d+2
i=1 λi = 0 we have

s :=
∑
pi∈P1 λi =

∑
pi∈P2 −λi. Renormalizing by µi = λi/s and νi = λi/s yields convex

combinations
∑
pi∈P1 µipi =

∑
pi∈P2 νipi that describe a common point of conv(P1) and

conv(P2).

Theorem 4.9 (Helly). Consider a collection C = {C1, . . . , Cn} of n > d + 1 convex
subsets of Rd, such that any d + 1 pairwise distinct sets from C have non-empty
intersection. Then also the intersection

⋂n
i=1Ci of all sets from C is non-empty.

Proof. Induction on n. The base case n = d + 1 holds by assumption. Hence suppose
that n > d + 2. Consider the sets Di =

⋂
j6=iCj, for i ∈ {1, . . . , n}. As Di is an

intersection of n − 1 sets from C, by the inductive hypothesis we know that Di 6= ∅.
Therefore we can find some point pi ∈ Di, for each i ∈ {1, . . . , n}. Now by Theorem 4.8
the set P = {p1, . . . , pn} can be partitioned into two disjoint subsets P1 and P2 such that
conv(P1) ∩ conv(P2) 6= ∅. We claim that any point p ∈ conv(P1) ∩ conv(P2) also lies in⋂n
i=1Ci, which completes the proof.
Consider some Ci, for i ∈ {1, . . . , n}. By construction Dj ⊆ Ci, for j 6= i. Thus pi

is the only point from P that may not be in Ci. As pi is part of only one of P1 or P2,
say, of P1, we have P2 ⊆ Ci. The convexity of Ci implies conv(P2) ⊆ Ci and, therefore,
p ∈ Ci.

67

Chapter 4. Convex Hull Geometry: C&A 2019

There is a nice application of Helly’s theorem showing the existence of so-called
centerpoints of finite point sets. Basically, a centerpoint is one possible generalization of
the median of one-dimensional sets. (See, e.g., [5].)

Definition 4.10. Let P ⊂ Rd be a set of n points. A point p, not necessarily in P, is
a centerpoint of P if every open halfspace that contains more than dn

d+1
points of P

also contains p.

Stated differently, every closed halfspace containing a centerpoint contains at least
n
d+1

points of P (which is clearly equivalent to containing at least
⌈
n
d+1

⌉
points). We

have the following result, which we prove similar to [8].

Theorem 4.11. For every set P ⊂ Rd of n points there exists a centerpoint.

Proof. We may assume that P contains at least d + 1 affinely independent points (oth-
erwise, a centerpoint can be found in a lower-dimensional affine sub-space).

Let A be the family of subsets of P that are defined by the intersection of P with an
open halfspace, and that contain more than dn

d+1
points. Note that since P is finite, also

the number of sets in A = {A1, . . . , Am} is finite. Let Ci := conv(Ai). If there exists
a point c that is in the intersection

⋂m
i=1Ci, then c is contained in any open halfspace

that contains more than dn
d+1

points of P and thus is a centerpoint of P. We show the
existence of c by showing that any d+ 1 elements of {C1, . . . , Cm} have a common point,
and then applying Theorem 4.9.

For any d + 1 sets in A, suppose that any point of P occurs in at most d of these
subsets. Then in total we would have at most dn occurrences of points in these subsets.
However, by the choice of A, each set contains more than dn

d+1
points, so the total number

of occurrences is more than (d+1) dn
d+1

= dn. Hence, any d+1 sets in A have a common
point, and thus

⋂m
i=1Ci also contains a point c.

Exercise 4.12. Show that the number of points in Definition 4.10 is best possible, that
is, for every n there is a set of n points in Rd such that for any p ∈ Rd there is an
open halfspace containing

⌊
dn
d+1

⌋
points but not p.

Theorem 4.13 (Carathéodory [3]). For any P ⊂ Rd and q ∈ conv(P) there exist k 6 d+1
points p1, . . . , pk ∈ P such that q ∈ conv(p1, . . . , pk).

Exercise 4.14. Prove Theorem 4.13.

Theorem 4.15 (Separation Theorem). Any two compact convex sets C,D ⊂ Rd with
C ∩D = ∅ can be separated strictly by a hyperplane, that is, there exists a hyperplane
h such that C and D lie in the opposite open halfspaces bounded by h.

Proof. Consider the distance function δ : C×D→ R with (c, d) 7→ ||c−d||. Since C×D
is compact and δ is continuous and strictly bounded from below by 0, the function δ
attains its minimum at some point (c0, d0) ∈ C × D with δ(c0, d0) > 0. Let h be the

68

Geometry: C&A 2019 4.2. Classic Theorems for Convex Sets

c0
d0

C
Dh

c ′

Figure 4.2: The disjoint compact convex sets C and D have a separating hyperplane h.

hyperplane perpendicular to the line segment c0d0 and passing through the midpoint of
c0 and d0. (See Figure 4.2.)

If there was a point, say, c ′ in C ∩ h, then by convexity of C the whole line segment
coc ′ lies in C and some point along this segment is closer to d0 than is c0, in contradiction
to the choice of c0. The figure shown to the right depicts the situation in R2. If, say,
C has points on both sides of h, then by convexity of C it has also a point on h, but
we just saw that there is no such point. Therefore, C and D must lie in different open
halfspaces bounded by h.

The statement above is wrong for arbitrary (not necessarily compact) convex sets.
However, if the separation is not required to be strict (the hyperplane may intersect the
sets), then such a separation always exists, with the proof being a bit more involved
(cf. [8], but also check the errata on Matoušek’s webpage).

Exercise 4.16. Show that the Separation Theorem does not hold in general, if not both
of the sets are convex.

Exercise 4.17. Prove or disprove:

a) The convex hull of a compact subset of Rd is compact.

b) The convex hull of a closed subset of Rd is closed.

Altogether we obtain various equivalent definitions for the convex hull, summarized
in the following theorem.

Theorem 4.18. For a compact set P ⊂ Rd we can characterize conv(P) equivalently as
one of

1. the smallest (w. r. t. set inclusion) convex subset of Rd that contains P;

2. the set of all convex combinations of points from P;

3. the set of all convex combinations formed by d+ 1 or fewer points from P;

4. the intersection of all convex supersets of P;

5. the intersection of all closed halfspaces containing P.

Exercise 4.19. Prove Theorem 4.18.

69

Chapter 4. Convex Hull Geometry: C&A 2019

4.3 Planar Convex Hull

Although we know by now what is the convex hull of a point set, it is not yet clear how
to construct it algorithmically. As a first step, we have to find a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a finite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions finding a suitable representation for convex polytopes is a much more delicate
task.

Problem 4.20 (Convex hull).

Input: P = {p1, . . . , pn} ⊂ R2, n ∈ N.

Output: Sequence (q1, . . . , qh), 1 6 h 6 n, of the vertices of conv(P) (ordered counter-
clockwise).

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 4.3: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of
the convex hull and just consider it as a point set.

Problem 4.21 (Extremal points).

Input: P = {p1, . . . , pn} ⊂ R2, n ∈ N.

Output: Set Q ⊆ P of the vertices of conv(P).

Degeneracies. A couple of further clarifications regarding the above problem definitions
are in order.

First of all, for efficiency reasons an input is usually specified as a sequence of points.
Do we insist that this sequence forms a set or are duplications of points allowed?

70

Geometry: C&A 2019 4.3. Planar Convex Hull

What if three points are collinear? Are all of them considered extremal? According
to our definition from above, they are not and that is what we will stick to. But note
that there may be cases where one wants to include all such points, nevertheless.

By the Separation Theorem, every extremal point p can be separated from the convex
hull of the remaining points by a halfplane. If we take such a halfplane and translate its
defining line such that it passes through p, then all points from P other than p should lie
in the resulting open halfplane. In R2 it turns out convenient to work with the following
“directed” reformulation.

Proposition 4.22. A point p ∈ P = {p1, . . . , pn} ⊂ R2 is extremal for P ⇐⇒ there is a
directed line g through p such that P \ {p} is (strictly) to the left of g.

c
r

The interior angle at a vertex v of a polygon P is the angle
between the two edges of P incident to v whose corresponding
angular domain lies in P◦. If this angle is smaller than π, the
vertex is called convex ; if the angle is larger than π, the vertex is
called reflex. For instance, the vertex c in the polygon depicted
to the right is a convex vertex, whereas the vertex labeled r is
a reflex vertex.

Exercise 4.23.
A set S ⊂ R2 is star-shaped if there exists a point c ∈ S,
such that for every point p ∈ S the line segment cp is
contained in S. A simple polygon with exactly three convex
vertices is called a pseudotriangle (see the example shown
on the right).
In the following we consider subsets of R2. Prove or disprove:

a) Every convex vertex of a simple polygon lies on its convex hull.

b) Every star-shaped set is convex.

c) Every convex set is star-shaped.

d) The intersection of two convex sets is convex.

e) The union of two convex sets is convex.

f) The intersection of two star-shaped sets is star-shaped.

g) The intersection of a convex set with a star-shaped set is star-shaped.

h) Every triangle is a pseudotriangle.

i) Every pseudotriangle is star-shaped.

71

Chapter 4. Convex Hull Geometry: C&A 2019

4.4 Trivial algorithms

One can compute the extremal points using Carathéodory’s Theorem as follows: Test
for every point p ∈ P whether there are q, r, s ∈ P \ {p} such that p is inside the triangle
with vertices q, r, and s. Runtime O(n4).

Another option, inspired by the Separation Theorem: test for every pair (p, q) ∈ P2
whether all points from P \ {p, q} are to the left of the directed line through p and q (or
on the line segment pq). Runtime O(n3).

Exercise 4.24. Let P = (p0, . . . , pn−1) be a sequence of n points in R2. Someone claims
that you can check by means of the following algorithm whether or not P describes
the boundary of a convex polygon in counterclockwise order:

bool is_convex(p0, . . . , pn−1) {
for i = 0, . . . , n− 1:

if (pi, p(i+1)modn, p(i+2)modn) form a rightturn:
return false;

return true;
}

Disprove the claim and describe a correct algorithm to solve the problem.

Exercise 4.25. Let P ⊂ R2 be a convex polygon, given as an array p[0]. . .p[n-1] of its
n vertices in counterclockwise order.

a) Describe an O(log(n)) time algorithm to determine whether a point q lies
inside, outside or on the boundary of P.

b) Describe an O(log(n)) time algorithm to find a (right) tangent to P from a
query point q located outside P. That is, find a vertex p[i], such that P is
contained in the closed halfplane to the left of the oriented line qp[i].

4.5 Jarvis’ Wrap

We are now ready to describe a first simple algorithm to construct the convex hull. It is
inspired by Proposition 4.22 and works as follows:

Find a point p1 that is a vertex of conv(P) (e.g., the one with smallest x-
coordinate). “Wrap” P starting from p1, i.e., always find the next vertex
of conv(P) as the one that is rightmost with respect to the direction given
by the previous two vertices.

Besides comparing x-coordinates, the only geometric primitive needed is an orienta-
tion test: Denote by rightturn(p, q, r), for three points p, q, r ∈ R2, the predicate that
is true if and only if r is (strictly) to the right of the oriented line pq.

72

Geometry: C&A 2019 4.5. Jarvis’ Wrap

q[0]=p start

q next

q[1]

q[2]

Code for Jarvis’ Wrap.

p[0..N) contains a sequence of N points.
p_start point with smallest x-coordinate.
q_next some other point in p[0..N).

int h = 0;
Point_2 q_now = p_start;
do {

q[h] = q_now;
h = h + 1;

for (int i = 0; i < N; i = i + 1)
if (rightturn_2(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;
q_next = p_start;

} while (q_now != p_start);

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

Analysis. For every output point the above algorithm spends n rightturn tests, which is
⇒ O(nh) in total.

Theorem 4.26. [7] Jarvis’ Wrap computes the convex hull of n points in R2 using
O(nh) rightturn tests, where h is the number of hull vertices.

In the worst case we have h = n, that is, O(n2) rightturn tests. Jarvis’ Wrap has a
remarkable property that is called output sensitivity : the runtime depends not only on
the size of the input but also on the size of the output. For a huge point set it constructs
the convex hull in optimal linear time, if the convex hull consists of a constant number of
vertices only. Unfortunately the worst case performance of Jarvis’ Wrap is suboptimal,
as we will see soon.

73

Chapter 4. Convex Hull Geometry: C&A 2019

Degeneracies. The algorithm may have to cope with various degeneracies.

� Several points have smallest x-coordinate ⇒ lexicographic order:

(px, py) < (qx, qy) ⇐⇒ px < qx ∨ px = qx ∧ py < qy .

� Three or more points collinear ⇒ choose the point that is farthest among those
that are rightmost.

Predicates. Besides the lexicographic comparison mentioned above, the Jarvis’ Wrap
(and most other 2D convex hull algorithms for that matter) need one more geomet-
ric predicate: the rightturn or—more generally—orientation test. The computation
amounts to evaluating a polynomial of degree two, see the exercise below. We therefore
say that the orientation test has algebraic degree two. In contrast, the lexicographic
comparison has degree one only. The algebraic degree not only has a direct impact on
the efficiency of a geometric algorithm (lower degree↔ less multiplications), but also an
indirect one because high degree predicates may create large intermediate results, which
may lead to overflows and are much more costly to compute with exactly.

Exercise 4.27. Prove that for three points (px, py), (qx, qy), (rx, ry) ∈ R2, the sign of
the determinant∣∣∣∣∣∣

1 px py
1 qx qy
1 rx ry

∣∣∣∣∣∣
determines if r lies to the right, to the left or on the directed line through p and q.

Exercise 4.28. The InCircle predicate is: Given three points p, q, r ∈ R2 that define
a circle C and a fourth point s, is s located inside C or not? The goal of this
exercise is to derive an algebraic formulation of the incircle predicate in form of
a determinant, similar to the formulation of the orientation test given above in
Exercise 4.27. To this end we employ the so-called parabolic lifting map, which will
also play a prominent role in the next chapter of the course.

The parabolic lifting map ` : R2 → R3 is defined for a point p = (x, y) ∈ R2 by
`(p) = (x, y, x2 + y2). For a circle C ⊆ R2 of positive radius, show that the “lifted
circle” `(C) = {`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover,
show that a point p ∈ R2 is strictly inside (outside, respectively) of C if and only if
the lifted point `(p) is strictly below (above, respectively) hC.

Use these insights to formulate the InCircle predicate for given points (px, py),
(qx, qy), (rx, ry), (sx, sy) ∈ R2 as a determinant.

74

Geometry: C&A 2019 4.6. Graham Scan (Successive Local Repair)

4.6 Graham Scan (Successive Local Repair)

There exist many algorithms that exhibit a better worst-case runtime than Jarvis’ Wrap.
Here we discuss only one of them: a particularly elegant and easy-to-implement variant of
the so-called Graham Scan [6]. This algorithm is referred to as Successive Local Repair
because it starts with some polygon enclosing all points and then step-by-step repairs
the deficiencies of this polygon, by removing nonconvex vertices. It goes as follows:

Sort the points lexicographically to obtain a sequence p0, . . . , pn−1 and build a cor-
responding circular sequence p0, . . . , pn−1, . . . , p0 that walks around the point set in
anticlockwise direction.

p0

p1

p2

p3

p4

p5

p6

p7

p8

p0 p1 p2 p3 p4 p5 p6 p7 p8 p7 p6 p5 p4 p3 p2 p1 p0

As long as there is a (consecutive) triple (p, q, r) such that r is to the right of or on the
directed line −→pq, remove q from the sequence.

Code for Graham Scan.

p[0..N) lexicographically sorted sequence of pairwise distinct points, N > 2.

q[0] = p[0];
int h = 0;
// Lower convex hull (left to right):
for (int i = 1; i < N; i = i + 1) {

while (h>0 && !leftturn_2(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

// Upper convex hull (right to left):
for (int i = N-2; i >= 0; i = i - 1) {

while (!leftturn_2(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

75

Chapter 4. Convex Hull Geometry: C&A 2019

Correctness. We argue for the lower convex hull only. The argument for the upper hull is
symmetric. A point p is on the lower convex hull of P if there is a rightward directed line
g through p such that P\{p} is (strictly) to the left of g. A directed line is rightward if it
forms an absolute angle of at most π with the positive x-axis. (Compare this statement
with the one in Proposition 4.22.)

First, we claim that every point that the algorithm discards does not appear on the
lower convex hull. A point qh is discarded only if there exist points qh−1 and pi with
qh−1 < qh < pi (lexicographically) so that qh−1qhpi does not form a leftturn. Thus,
for every rightward directed line g through qh at least one of qh−1 or pi lies on or to
the right of g. It follows that qh is not on the lower convex hull, as claimed.

At the end of the (lower hull part of the) algorithm, in the sequence q0, . . . , qh−1 every
consecutive triple qiqi+1qi+2, for 0 6 i 6 h− 3, forms a leftturn with qi < qi+1 < qi+2.
Thus, for every such triple there exists a rightward directed line g through qi+1 such that
P\{p} is (strictly) to the left of g (for instance, take g to be perpendicular to the angular
bisector of \qi+2qi+1qi). It follows that every inner point of the sequence q0, . . . , qh−1
is on the lower convex hull. The extreme points q0 and qh−1 are the lexicographically
smallest and largest, respectively, point of P, both of which are easily seen to be on the
lower convex hull as well. Therefore, q0, . . . , qh−1 form the lower convex hull of P, which
proves the correctness of the algorithm.

Analysis.

Theorem 4.29. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logn) geometric operations.

Proof. 1. Sorting and removal of duplicate points: O(n logn).

2. At the beginning we have a sequence of 2n − 1 points; at the end the sequence
consists of h points. Observe that for every positive orientation test, one point is
discarded from the sequence for good. Therefore, we have exactly 2n− h− 1 such
shortcuts/positive orientation tests. In addition there are at most 2n− 2 negative
tests (#iterations of the outer for loops). Altogether we have at most 4n− h− 3
orientation tests.

In total the algorithm uses O(n logn) geometric operations. Note that the number of
orientation tests is linear only, but O(n logn) lexicographic comparisons are needed.

4.7 Lower Bound

It is not hard to see that the runtime of Graham Scan is asymptotically optimal in the
worst-case.

Theorem 4.30. Ω(n logn) geometric operations are needed to construct the convex
hull of n points in R2 (in the algebraic computation tree model).

76

Geometry: C&A 2019 4.8. Chan’s Algorithm

Proof. Reduction from sorting (for which it is known that Ω(n logn) comparisons are
needed in the algebraic computation tree model). Given n real numbers x1, . . . , xn,
construct a set P = {pi | 1 6 i 6 n} of n points in R2 by setting pi = (xi, x

2
i). This

construction can be regarded as embedding the numbers into R2 along the x-axis and
then projecting the resulting points vertically onto the unit parabola. The order in which
the points appear along the lower convex hull of P corresponds to the sorted order of
the xi. Therefore, if we could construct the convex hull in o(n logn) time, we could also
sort in o(n logn) time.

Clearly this reduction does not work for the Extremal Points problem. But us-
ing a reduction from Element Uniqueness (see Section 1.1) instead, one can show that
Ω(n logn) is also a lower bound for the number of operations needed to compute the set
of extremal points only. This was first shown by Avis [1] for linear computation trees,
then by Yao [10] for quadratic computation trees, and finally by Ben-Or [2] for general
algebraic computation trees.

4.8 Chan’s Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, this is not really the
case: Recall that the lower bound is a worst case bound. For instance, the Jarvis’ Wrap
runs in O(nh) time an thus beats the Ω(n logn) bound in case that h = o(logn). The
question remains whether one can achieve both output dependence and optimal worst
case performance at the same time. Indeed, Chan [4] presented an algorithm to achieve
this runtime by cleverly combining the “best of” Jarvis’ Wrap and Graham Scan. Let us
look at this algorithm in detail. The algorithm consists of two steps that are executed
one after another.

Divide. Input: a set P ⊂ R2 of n points and a number H ∈ {1, . . . , n}.

1. Divide P into k = dn/He sets P1, . . . , Pk with |Pi| 6 H.

2. Construct conv(Pi) for all i, 1 6 i 6 k.

Analysis. Step 1 takes O(n) time. Step 2 can be handled using Graham Scan in
O(H logH) time for any single Pi, that is, O(n logH) time in total.

Conquer. Output: the vertices of conv(P) in counterclockwise order, if conv(P) has less
than H vertices; otherwise, the message that conv(P) has at least H vertices.

1. Find the lexicographically smallest point p< in P.

2. Starting from p< find the first H points of conv(P) oriented counterclockwise (si-
multaneous Jarvis’ Wrap on the sequences conv(Pi)).

77

Chapter 4. Convex Hull Geometry: C&A 2019

Determine in every wrap step the point qi of tan-
gency from the current point of conv(P) to conv(Pi),
for all 1 6 i 6 k. We have seen in Exercise 4.25 how
to compute qi in O(log |conv(Pi)|) = O(logH) time.
Among the k candidates q1, . . . , qk we find the next
vertex of conv(P) in O(k) time.

Analysis. Step 1 takes O(n) time. Step 2 con-
sists of at most H wrap steps. Each wrap step needs
O(k logH + k) = O(k logH) time, which amounts to
O(Hk logH) = O(n logH) time for Step 2 in total.

Remark. Using a more clever search strategy instead of many tangency searches one
can handle the conquer phase in O(n) time, see Exercise 4.31 below. However, this is
irrelevant as far as the asymptotic runtime is concerned, given that already the divide
step takes O(n logH) time.

Exercise 4.31. Consider k convex polygons P1, . . . Pk, for some constant k ∈ N, where
each polygon is given as a list of its vertices in counterclockwise orientation. Show
how to construct the convex hull of P1 ∪ . . . ∪ Pk in O(n) time, where n =

∑k
i=1 ni

and ni is the number of vertices of Pi, for 1 6 i 6 k.

Searching for h. While the runtime bound for H = h is exactly what we were heading for,
it looks like in order to actually run the algorithm we would have to know h, which—
in general—we do not. Fortunately we can circumvent this problem rather easily, by
applying what is called a doubly exponential search. It works as follows.

Call the algorithm from above iteratively with parameter H = min{22t , n}, for t =
0, . . ., until the conquer step finds all extremal points of P (i.e., the wrap returns to its
starting point).

Analysis: Let 22s be the last parameter for which the algorithm is called. Since the
previous call with H = 22

s−1 did not find all extremal points, we know that 22s−1 < h,
that is, 2s−1 < logh, where h is the number of extremal points of P. The total runtime
is therefore at most

s∑
i=0

cn log 22
i

= cn

s∑
i=0

2i = cn(2s+1 − 1) < 4cn logh = O(n logh),

for some constant c ∈ R. In summary, we obtain the following theorem.

Theorem 4.32. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logh) geometric operations, where h is the number of convex hull vertices.

Questions

14. How is convexity defined? What is the convex hull of a set in Rd? Give at
least three possible definitions and show that they are equivalent.

78

Geometry: C&A 2019 4.8. Chan’s Algorithm

15. What is a centerpoint of a finite point set in Rd? State and prove the center-
point theorem and the two classic theorems used in its proof (Theorem 4.11 along
with Theorem 4.9 and Theorem 4.8).

16. What does it mean to compute the convex hull of a set of points in R2? Discuss
input and expected output and possible degeneracies.

17. How can the convex hull of a set of n points in R2 be computed efficiently?
Describe and analyze (incl. proofs) Jarvis’ Wrap, Successive Local Repair, and
Chan’s Algorithm.

18. Is there a linear time algorithm to compute the convex hull of n points in R2?
Prove the lower bound and define/explain the model in which it holds.

19. Which geometric primitive operations are used to compute the convex hull of
n points in R2? Explain the two predicates and how to compute them.

References

[1] David Avis, Comments on a lower bound for convex hull determination. Inform.
Process. Lett., 11, 3, (1980), 126.

[2] Michael Ben-Or, Lower bounds for algebraic computation trees. In Proc. 15th
Annu. ACM Sympos. Theory Comput., pp. 80–86, 1983.

[3] Constantin Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstan-
ten von positiven harmonischen Funktionen. Rendiconto del Circolo Matematico
di Palermo, 32, (1911), 193–217.

[4] Timothy M. Chan, Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete Comput. Geom., 16, 4, (1996), 361–368.

[5] Herbert Edelsbrunner, Algorithms in combinatorial geometry , vol. 10 of EATCS
Monographs on Theoretical Computer Science, Springer, 1987.

[6] Ronald L. Graham, An efficient algorithm for determining the convex hull of a finite
planar set. Inform. Process. Lett., 1, 4, (1972), 132–133.

[7] Ray A. Jarvis, On the identification of the convex hull of a finite set of points in the
plane. Inform. Process. Lett., 2, 1, (1973), 18–21.

[8] Jiří Matoušek, Lectures on discrete geometry , Springer-Verlag, New York, NY,
2002.

[9] Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.
Math. Annalen, 83, 1–2, (1921), 113–115.

[10] Andrew C. Yao, A lower bound to finding convex hulls. J. ACM, 28, 4, (1981),
780–787.

79

https://doi.org/10.1016/0020-0190(80)90125-8
https://doi.org/10.1145/800061.808735
https://doi.org/10.1007/BF03014795
https://doi.org/10.1007/BF03014795
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/BF01464231
https://doi.org/10.1145/322276.322289

Chapter 5

Delaunay Triangulations

In Chapter 3 we have discussed triangulations of simple polygons. A triangulation nicely
partitions a polygon into triangles, which allows, for instance, to easily compute the
area or a guarding of the polygon. Another typical application scenario is to use a
triangulation T for interpolation: Suppose a function f is defined on the vertices of the
polygon P, and we want to extend it “reasonably” and continuously to P◦. Then for a
point p ∈ P◦ find a triangle t of T that contains p. As p can be written as a convex
combination

∑3
i=1 λivi of the vertices v1, v2, v3 of t, we just use the same coefficients to

obtain an interpolation f(p) :=
∑3
i=1 λif(vi) of the function values.

If triangulations are a useful tool when working with polygons, they might also turn
out useful to deal with other geometric objects, for instance, point sets. But what could
be a triangulation of a point set? Polygons have a clearly defined interior, which naturally
lends itself to be covered by smaller polygons such as triangles. A point set does not have
an interior, except . . . Here the notion of convex hull comes handy, because it allows us
to treat a point set as a convex polygon. Actually, not really a convex polygon, because
points in the interior of the convex hull should not be ignored completely. But one way to
think of a point set is as a convex polygon—its convex hull—possibly with some holes—
which are points—in its interior. A triangulation should then partition the convex hull
while respecting the points in the interior, as shown in the example in Figure 5.1b.

(a) Simple polygon triangulation. (b) Point set triangulation. (c) Not a triangulation.

Figure 5.1: Examples of (non-)triangulations.

In contrast, the example depicted in Figure 5.1c nicely subdivides the convex hull

80

Geometry: C&A 2019

but should not be regarded a triangulation: Two points in the interior are not respected
but simply swallowed by a large triangle.
This interpretation directly leads to the following adaption of Definition 3.7.

Definition 5.1. A triangulation of a finite point set P ⊂ R2 is a collection T of triangles,
such that

(1) conv(P) =
⋃
T∈T T ;

(2) P =
⋃
T∈T V(T); and

(3) for every distinct pair T,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Just as for polygons, triangulations are universally available for point sets, meaning
that (almost) every point set admits at least one.

Proposition 5.2. Every set P ⊆ R2 of n > 3 points has a triangulation, unless all
points in P are collinear.

Proof. In order to construct a triangulation for P, consider the lexicographically sorted
sequence p1, . . . , pn of points in P. Let m be minimal such that p1, . . . , pm are not
collinear. We triangulate p1, . . . , pm by connecting pm to all of p1, . . . , pm−1 (which are
on a common line), see Figure 5.2a.

(a) Getting started. (b) Adding a point.

Figure 5.2: Constructing the scan triangulation of P.

Then we add pm+1, . . . , pn. When adding pi, for i > m, we connect pi with all
vertices of Ci−1 := conv({p1, . . . , pi−1}) that it “sees”, that is, every vertex v of Ci−1 for
which piv∩Ci−1 = {v}. In particular, among these vertices are the two points of tangency
from pi to Ci−1, which shows that we always add triangles (Figure 5.2b) whose union
after each step covers Ci.

The triangulation that is constructed in Proposition 5.2 is called a scan triangulation.
Such a triangulation (Figure 5.3a (left) shows a larger example) is usually “ugly”, though,
since it tends to have many long and skinny triangles. This is not just an aesthetic deficit.
Having long and skinny triangles means that the vertices of a triangle tend to be spread
out far from each other. You can probably imagine that such a behavior is undesirable,

81

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

(a) Scan triangulation. (b) Delaunay triangulation.

Figure 5.3: Two triangulations of the same set of 50 points.

for instance, in the context of interpolation. In contrast, the Delaunay triangulation
of the same point set (Figure 5.3b) looks much nicer, and we will discuss in the next
section how to get this triangulation.

Exercise 5.3. Describe an O(n logn) time algorithm to construct a scan triangulation
for a set of n points in R2.

On another note, if you look closely into the SLR-algorithm to compute planar convex
hulls that was discussed in Chapter 4, then you will realize that we also could have used
this algorithm in the proof of Proposition 5.2. Whenever a point is discarded during
SLR, a triangle is added to the polygon that eventually becomes the convex hull.

In view of the preceding chapter, we may regard a triangulation as a plane graph:
the vertices are the points in P and there is an edge between two points p 6= q, if and
only if there is a triangle with vertices p and q. Therefore we can use Euler’s formula to
determine the number of edges in a triangulation.

Lemma 5.4. Any triangulation of a set P ⊂ R2 of n points has exactly 3n − h − 3
edges, where h is the number of points from P on ∂conv(P).

Proof. Consider a triangulation T of P and denote by E the set of edges and by F the
set of faces of T . We count the number of edge-face incidences in two ways. Denote
I = {(e, f) ∈ E× F : e ⊂ ∂f}.

On the one hand, every edge is incident to exactly two faces and therefore |I| = 2|E|.
On the other hand, every bounded face of T is a triangle and the unbounded face has h
edges on its boundary. Therefore, |I| = 3(|F|− 1) + h.

82

Geometry: C&A 2019 5.1. The Empty Circle Property

Together we obtain 3|F| = 2|E| − h + 3. Using Euler’s formula (3n − 3|E| + 3|F| = 6)
we conclude that 3n− |E|− h+ 3 = 6 and so |E| = 3n− h− 3.

In graph theory, the term “triangulation” is sometimes used as a synonym for “maxi-
mal planar”. But geometric triangulations are different, they are maximal planar in the
sense that no straight-line edge can be added without sacrificing planarity.

Corollary 5.5. A triangulation of a set P ⊂ R2 of n points is maximal planar, if and
only if conv(P) is a triangle.

Proof. Combine Corollary 2.5 and Lemma 5.4.

Exercise 5.6. Find for every n > 3 a simple polygon P with n vertices such that P has
exactly one triangulation. P should be in general position, meaning that no three
vertices are collinear.

Exercise 5.7. Show that every set of n > 5 points in general position (no three points
are collinear) has at least two different triangulations.
Hint: Show first that every set of five points in general position contains a convex
4-hole, that is, a subset of four points that span a convex quadrilateral that does
not contain the fifth point.

5.1 The Empty Circle Property

We will now move on to study the ominous and supposedly nice Delaunay triangulations
mentioned above. They are defined in terms of an empty circumcircle property for
triangles. The circumcircle of a triangle is the unique circle passing through the three
vertices of the triangle, see Figure 5.4.

Figure 5.4: Circumcircle of a triangle.

Definition 5.8. A triangulation of a finite point set P ⊂ R2 is called a Delaunay triangu-
lation, if the circumcircle of every triangle is empty, that is, there is no point from
P in its interior.

Consider the example depicted in Figure 5.5. It shows a Delaunay triangulation of a
set of six points: The circumcircles of all five triangles are empty (we also say that the

83

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

Figure 5.5: All triangles satisfy the empty circle property.

triangles satisfy the empty circle property). The dashed circle is not empty, but that is
fine, since it is not a circumcircle of any triangle.

It is instructive to look at the case of four points in convex position. Obviously, there
are two possible triangulations, but in general, only one of them will be Delaunay, see
Figure 5.6a and 5.6b. If the four points are on a common circle, though, this circle is
empty; at the same time it is the circumcircle of all possible triangles; therefore, both
triangulations of the point set are Delaunay, see Figure 5.6c.

(a) Delaunay triangulation. (b) Non-Delaunay triangulation. (c) Two Delaunay triangulations.

Figure 5.6: Triangulations of four points in convex position.

Proposition 5.9. Given a set P ⊂ R2 of four points that are in convex position but not
cocircular. Then P has exactly one Delaunay triangulation.

Proof. Consider a convex polygon P = pqrs. There are two triangulations of P: a
triangulation T1 using the edge pr and a triangulation T2 using the edge qs.

Consider the family C1 of circles through pr, which contains the circumcircles C1 =
pqr and C ′1 = rsp of the triangles in T1. By assumption s is not on C1. If s is outside
of C1, then q is outside of C ′1: Consider the process of continuously moving from C1 to
C ′1 in C1 (Figure 5.7a); the point q is “left behind” immediately when going beyond C1
and only the final circle C ′1 “grabs” the point s.

84

Geometry: C&A 2019 5.2. The Lawson Flip algorithm

p

q
r

s

C1

C ′
1

(a) Going from C1 to C ′1 in C1.

p

q r

s

C1

C2

(b) Going from C1 to C2 in C2.

Figure 5.7: Circumcircles and containment for triangulations of four points.

Similarly, consider the family C2 of circles through pq, which contains the circumcir-
cles C1 = pqr and C2 = spq, the latter belonging to a triangle in T2. As s is outside of
C1, it follows that r is inside C2: Consider the process of continuously moving from C1
to C2 in C2 (Figure 5.7b); the point r is on C1 and remains within the circle all the way
up to C2. This shows that T1 is Delaunay, whereas T2 is not.

The case that s is located inside C1 is symmetric: just cyclically shift the roles of
pqrs to qrsp.

Exercise 5.10. Prove or disprove that every minimum weight triangulation (that is,
a triangulation for which the sum of edge lengths is minimum) is a Delaunay
triangulation.

5.2 The Lawson Flip algorithm

It is not clear yet that every point set actually has a Delaunay triangulation (given that
not all points are on a common line). In this and the next two sections, we will prove
that this is the case. The proof is algorithmic. Here is the Lawson flip algorithm for a
set P of n points.

1. Compute some triangulation of P (for example, the scan triangulation).

2. While there exists a subtriangulation of four points in convex position that is not
Delaunay (like in Figure 5.6b), replace this subtriangulation by the other triangu-
lation of the four points (Figure 5.6a).

We call the replacement operation in the second step a (Lawson) flip.

Theorem 5.11. Let P ⊆ R2 be a set of n points, equipped with some triangulation
T. The Lawson flip algorithm terminates after at most

(
n
2

)
= O(n2) flips, and the

resulting triangulation D is a Delaunay triangulation of P.

85

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

We will prove Theorem 5.11 in two steps: First we show that the program described
above always terminates and, therefore, is an algorithm, indeed (Section 5.3). Then we
show that the algorithm does what it claims to do, namely the result is a Delaunay
triangulation (Section 5.4).

5.3 Termination of the Lawson Flip Algorithm: The Lifting Map

In order to prove Theorem 5.11, we invoke the (parabolic) lifting map. This is the
following: given a point p = (x, y) ∈ R2, its lifting `(p) is the point

`(p) = (x, y, x2 + y2) ∈ R3.

Geometrically, ` “lifts” the point vertically up until it lies on the unit paraboloid

{(x, y, z) | z = x2 + y2} ⊆ R3,

see Figure 5.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 5.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 4.28.
It is illustrated in Figure 5.8b.

Lemma 5.12. Let C ⊆ R2 be a circle of positive radius. The “lifted circle” `(C) =
{`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover, a point p ∈ R2
is strictly inside (outside, respectively) of C if and only if the lifted point `(p) is
strictly below (above, respectively) hC.

Using the lifting map, we can now prove Theorem 5.11. Let us fix the point set P for
this and the next section. First, we need to argue that the algorithm indeed terminates
(if you think about it a little, this is not obvious). So let us interpret a flip operation in

86

Geometry: C&A 2019 5.4. Correctness of the Lawson Flip Algorithm

the lifted picture. The flip involves four points in convex position in R2, and their lifted
images form a tetrahedron in R3 (think about why this tetrahedron cannot be “flat”).

The tetrahedron is made up of four triangles; when you look at it from the top, you
see two of the triangles, and when you look from the bottom, you see the other two. In
fact, what you see from the top and the bottom are the lifted images of the two possible
triangulations of the four-point set in R2 that is involved in the flip.

Here is the crucial fact that follows from Lemma 5.12: The two top triangles come
from the non-Delaunay triangulation before the flip, see Figure 5.9a. The reason is that
both top triangles have the respective fourth point below them, meaning that in R2,
the circumcircles of these triangles contain the respective fourth point—the empty circle
property is violated. In contrast, the bottom two triangles come from the Delaunay
triangulation of the four points: they both have the respective fourth point above them,
meaning that in R2, the circumcircles of the triangles do not contain the respective
fourth point, see Figure 5.9b.

(a) Before the flip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 5.9: Lawson flip: the height of the surface of lifted triangles decreases.

In the lifted picture, a Lawson flip can therefore be interpreted as an operation that
replaces the top two triangles of a tetrahedron by the bottom two ones. If we consider
the lifted image of the current triangulation, we therefore have a surface in R3 whose
pointwise height can only decrease through Lawson flips. In particular, once an edge
has been flipped, this edge will be strictly above the resulting surface and can therefore
never be flipped a second time. Since n points can span at most

(
n
2

)
edges, the bound

on the number of flips follows.

5.4 Correctness of the Lawson Flip Algorithm

It remains to show that the triangulation of P that we get upon termination of the
Lawson flip algorithm is indeed a Delaunay triangulation. Here is a first observation
telling us that the triangulation is “locally Delaunay”.

87

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

Observation 5.13. Let ∆,∆ ′ be two adjacent triangles in the triangulation D that results
from the Lawson flip algorithm. Then the circumcircle of ∆ does not have any
vertex of ∆ ′ in its interior, and vice versa.

If the two triangles together form a convex quadrilateral, this follows from the fact
that the Lawson flip algorithm did not flip the common edge of ∆ and ∆ ′. If the four
vertices are not in convex position, this is basic geometry: given a triangle ∆, its cir-
cumcircle C can only contain points of C \ ∆ that form a convex quadrilateral with the
vertices of ∆.

Now we show that the triangulation is also “globally Delaunay”.

Proposition 5.14. The triangulation D that results from the Lawson flip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point
p ∈ P strictly inside the circumcircle C of ∆. Among all such pairs (∆, p), we choose one
for which the distance of p to ∆ is minimal. Note that this distance is positive since D

is a triangulation of P. The situation is as depicted in Figure 5.10a.

q

∆

p

(a) A point p inside the cir-
cumcircle C of a triangle ∆.

q

∆

p

q

∆ ′

e

(b) The edge e of ∆ closest to p
and the second triangle ∆ ′

incident to e.

∆

p

q

∆ ′

e

C ′
C

(c) The circumcircle C ′ of ∆ ′ also
contains p, and p is closer to
∆ ′ than to ∆.

Figure 5.10: Correctness of the Lawson flip algorithm.

Now consider the edge e of ∆ that is facing p. There must be another triangle ∆ ′ in
D that is incident to the edge e. By the local Delaunay property of D, the third vertex q
of ∆ ′ is on or outside of C, see Figure 5.10b. But then the circumcircle C ′ of ∆ ′ contains
the whole portion of C on p’s side of e, hence it also contains p; moreover, p is closer to
∆ ′ than to ∆ (Figure 5.10c). But this is a contradiction to our choice of ∆ and p. Hence
there was no (∆, p), and D is a Delaunay triangulation.

Exercise 5.15. The Euclidean minimum spanning tree (EMST) of a finite point set
P ⊂ R2 is a spanning tree for which the sum of the edge lengths is minimum (among
all spanning trees of P). Show:

88

Geometry: C&A 2019 5.5. The Delaunay Graph

(a) Every EMST of P is a plane graph.

(b) Every EMST of P contains a closest pair, that is, an edge between two points
p, q ∈ P that have minimum distance to each other among all point pairs in(
P
2

)
.

(c) Every Delaunay Triangulation of P contains an EMST of P.

Exercise 5.16. (a) Show that for any two triangulations T1 and T2 on a point set P,
it is possible to transform T1 into T2 using O(n2) edge flips.

(b) Let D be a double chain (two convex chains of the same size, facing each other
so that for every line ` through two points on one chain, all points of the other
chain are on the same side of `). Show that there are two triangulations T1
and T2 on D such that at least Ω(n2) edge flips are needed to transform T1
into T2.

(c) Show that D can be constructed in such a way that one of the triangulations
from (b), say, T1 is a Delaunay triangulation.

5.5 The Delaunay Graph

Despite the fact that a point set may have more than one Delaunay triangulation, there
are certain edges that are present in every Delaunay triangulation, for instance, the edges
of the convex hull.

Definition 5.17. The Delaunay graph of P ⊆ R2 consists of all line segments pq, for
p, q ∈ P, that are contained in every Delaunay triangulation of P.

The following characterizes the edges of the Delaunay graph.

Lemma 5.18. The segment pq, for p, q ∈ P, is in the Delaunay graph of P if and only
if there exists a circle through p and q that has p and q on its boundary and all
other points of P are strictly outside.

Proof. “⇒”: Let pq be an edge in the Delaunay graph of P, and let D be a Delaunay
triangulation of P. Then there exists a triangle ∆ = pqr in D, whose circumcircle C does
not contain any point from P in its interior.

If there is a point s on ∂C such that rs intersects pq, then let ∆ ′ = pqt denote the
other (6= ∆) triangle in D that is incident to pq (Figure 5.11a). Flipping the edge pq
to rt yields another Delaunay triangulation of P that does not contain the edge pq, in
contradiction to pq being an edge in the Delaunay graph of P. Therefore, there is no
such point s.

Otherwise we can slightly change the circle C by moving away from r while keeping
p and q on the circle. As P is a finite point set, we can do such a modification without
catching another point from P with the circle. In this way we obtain a circle C ′ through
p and q such that all other points from P are strictly outside C ′ (Figure 5.12b).

89

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

p

q

r

s
C

∆

t

∆ ′

(a) Another point s ∈ ∂C.

p

q

r

C

∆

C ′

(b) Moving C away from s.

Figure 5.11: Characterization of edges in the Delaunay graph (I).

“⇐”: Let D be a Delaunay triangulation of P. If pq is not an edge of D, there must
be another edge of D that crosses pq (otherwise, we could add pq to D and still have
a plane graph, a contradiction to D being a triangulation of P). Let rs denote the first
edge of D that intersects the directed line segment pq.

Consider the triangle ∆ of D that is incident to rs on the side that faces p (given
that rs intersects pq this is a well defined direction). By the choice of rs neither of the
other two edges of ∆ intersects pq, and p /∈ ∆◦ because ∆ is part of a triangulation of P.
The only remaining option is that p is a vertex of ∆ = prs. As ∆ is part of a Delaunay
triangulation, its circumcircle C∆ is empty (i.e., C∆◦ ∩ P = ∅).

Consider now a circle C through p and q, which exists by assumption. Fixing p and q,
expand C towards r to eventually obtain the circle C ′ through p, q, and r (Figure 5.12a).
Recall that r and s are on different sides of the line through p and q. Therefore, s lies
strictly outside of C ′. Next fix p and r and expand C ′ towards s to eventually obtain the
circle C∆ through p, r, and s (Figure 5.12b). Recall that s and q are on the same side
of the line through p and r. Therefore, q ∈ C∆, which is in contradiction to C∆ being
empty. It follows that there is no Delaunay triangulation of P that does not contain the
edge pq.

The Delaunay graph is useful to prove uniqueness of the Delaunay triangulation in
case of general position.

Corollary 5.19. Let P ⊂ R2 be a finite set of points in general position, that is, no four
points of P are cocircular. Then P has a unique Delaunay triangulation.

5.6 Every Delaunay Triangulation Maximizes the Smallest Angle

Why are we actually interested in Delaunay triangulations? After all, having empty
circumcircles is not a goal in itself. But it turns out that Delaunay triangulations satisfy
a number of interesting properties. Here we show just one of them.

90

Geometry: C&A 2019 5.6. Delaunay Triangulation Maximizes Angles

p

q

r

s

C ′
C

∆

(a) Expanding C towards r.

p

q

r

s
C ′

C∆

∆

(b) Expanding C ′ towards s.

Figure 5.12: Characterization of edges in the Delaunay graph (II).

Recall that when we compared a scan triangulation with a Delaunay triangulation of
the same point set in Figure 5.3, we claimed that the scan triangulation is “ugly” because
it contains many long and skinny triangles. The triangles of the Delaunay triangulation,
at least in this example, look much nicer, that is, much closer to an equilateral triangle.
One way to quantify this “niceness” is to look at the angles that appear in a triangulation:
If all angles are large, then all triangles are reasonably close to an equilateral triangle.
Indeed, we will show that Delaunay triangulations maximize the smallest angle among
all triangulations of a given point set. Note that this does not imply that there are no
long and skinny triangles in a Delaunay triangulation. But if there is a long and skinny
triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle
in every triangulation of the point set.

Given a triangulation T of P, consider the sorted sequence A(T) = (α1, α2, . . . , α3m)
of interior angles, where m is the number of triangles (we have already remarked earlier
that m is a function of P only and does not depend on T). Being sorted means that
α1 6 α2 6 · · · 6 α3m. Let T,T ′ be two triangulations of P. We say that A(T) < A(T ′)
if there exists some i for which αi < α ′i and αj = α

′
j, for all j < i. (This is nothing but

the lexicographic order on these sequences.)

Theorem 5.20. Let P ⊆ R2 be a finite set of points in general position (not all collinear
and no four cocircular). Let D∗ be the unique Delaunay triangulation of P, and let
T be any triangulation of P. Then A(T) 6 A(D∗).

In particular, D∗ maximizes the smallest angle among all triangulations of P.

Proof. We know that T can be transformed into D∗ through the Lawson flip algorithm,
and we are done if we can show that each such flip lexicographically increases the sorted
angle sequence. A flip replaces six interior angles by six other interior angles, and we
will actually show that the smallest of the six angles strictly increases under the flip.
This implies that the whole angle sequence increases lexicographically.

91

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

α1

α4

α2α1

α3

α2

α4 α3

p

q

r

s

(a) Four cocircular points and the
induced eight angles.

α1

α4

α2α1
α3

α2

α4 α3

(b) The situation before a flip.

Figure 5.13: Angle-optimality of Delaunay triangulations.

Let us first look at the situation of four cocircular points, see Figure 5.13a. In this
situation, the inscribed angle theorem (a generalization of Thales’ Theorem, stated
below as Theorem 5.21) tells us that the eight depicted angles come in four equal pairs.
For instance, the angles labeled α1 at s and r are angles on the same side of the chord
pq of the circle.

In Figure 5.13b, we have the situation in which we perform a Lawson flip (replacing
the solid with the dashed diagonal). By the symbol α (α, respectively) we denote an
angle strictly smaller (larger, respectively) than α. Here are the six angles before the
flip:

α1 + α2, α3, α4, α1, α2, α3 + α4.

After the flip, we have

α1, α2, α3, α4, α1 + α4, α2 + α3.

Now, for every angle after the flip there is at least one smaller angle before the flip:

α1 > α1,

α2 > α2,

α3 > α3,

α4 > α4,

α1 + α4 > α4,

α2 + α3 > α3.

It follows that the smallest angle strictly increases.

Theorem 5.21 (Inscribed Angle Theorem). Let C be a circle with center c and positive
radius and p, q ∈ C. Then the angle \prqmodπ = 1

2
\pcq is the same, for all r ∈ C.

92

Geometry: C&A 2019 5.6. Delaunay Triangulation Maximizes Angles

p

q

r

s

t

C

2θ

θ

θ

π− θ

c

π+ θ

Figure 5.14: The Inscribed Angle Theorem with θ := \prq.

Proof. Without loss of generality we may assume that c is located to the left of or on
the oriented line pq.

Consider first the case that the triangle ∆ = pqr

contains c. Then ∆ can be partitioned into three trian-
gles: pcr, qcr, and cpq. All three triangles are isosce-
les, because two sides of each form the radius of C. De-
note α = \prc, β = \crq, γ = \cpq, and δ = \pcq

(see the figure shown to the right). The angles we are
interested in are θ = \prq = α + β and δ, for which
we have to show that δ = 2θ.

Indeed, the angle sum in ∆ is π = 2(α + β + γ)
and the angle sum in the triangle cpq is π = δ + 2γ.
Combining both yields δ = 2(α+ β) = 2θ.

p

q

r

C

δ

α

c

β

β

α γ
γ

Next suppose that pqcr are in convex position and
r is to the left of or on the oriented line pq. Without
loss of generality let r be to the left of or on the oriented
line qc. (The case that r lies to the right of or on the
oriented line pc is symmetric.) Define α, β, γ, δ as
above and observe that θ = α−β. Again have to show
that δ = 2θ.

The angle sum in the triangle cpq is π = δ + 2γ
and the angle sum in the triangle rpq is π = (α−β) +
α+γ+(γ−β) = 2(α+γ−β). Combining both yields
δ = π− 2γ = 2(α− β) = 2θ. p

q

r

C

δ

c

α

α
β

γ

γ

β

93

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

It remains to consider the case that r is to the right of the
oriented line pq.

Consider the point r ′ that is antipodal to r on C, and the
quadrilateral Q = prqr ′. We are interested in the angle φ of
Q at r. By Thales’ Theorem the inner angles of Q at p and q
are both π/2. Hence the angle sum of Q is 2π = θ+φ+2π/2
and so φ = π− θ.

p q

r

C

c

θ

φ

π
2

r ′

π
2

What happens in the case where the Delaunay triangulation is not unique? The
following still holds.

Theorem 5.22. Let P ⊆ R2 be a finite set of points, not all on a line. Every Delaunay
triangulation D of P maximizes the smallest angle among all triangulations T of P.

Proof. LetD be some Delaunay triangulation of P. We infinitesimally perturb the points
in P such that no four are on a common circle anymore. Then the Delaunay triangulation
becomes unique (Corollary 5.19). Starting from D, we keep applying Lawson flips until
we reach the unique Delaunay triangulation D∗ of the perturbed point set. Now we
examine this sequence of flips on the original unperturbed point set. All these flips must
involve four cocircular points (only in the cocircular case, an infinitesimal perturbation
can change “good” edges into “bad” edges that still need to be flipped). But as Figure 5.13
(a) easily implies, such a “degenerate” flip does not change the smallest of the six involved
angles. It follows that D and D∗ have the same smallest angle, and since D∗ maximizes
the smallest angle among all triangulations T (Theorem 5.20), so does D.

5.7 Constrained Triangulations

Sometimes one would like to have a Delaunay triangulation, but certain edges are already
prescribed, for example, a Delaunay triangulation of a simple polygon. Of course, one
cannot expect to be able to get a proper Delaunay triangulation where all triangles satisfy
the empty circle property. But it is possible to obtain some triangulation that comes as
close as possible to a proper Delaunay triangulation, given that we are forced to include
the edges in E. Such a triangulation is called a constrained Delaunay triangulation, a
formal definition of which follows.

Let P ⊆ R2 be a finite point set and G = (P, E) a geometric graph with vertex set
P (we consider the edges e ∈ E as line segments). A triangulation T of P respects G if
it contains all segments e ∈ E. A triangulation T of P that respects G is said to be a
constrained Delaunay triangulation of P with respect to G if the following holds for
every triangle ∆ of T:

The circumcircle of ∆ contains only points q ∈ P in its interior that are not
visible from the interior of ∆. A point q ∈ P is visible from the interior of

94

Geometry: C&A 2019 5.7. Constrained Triangulations

∆ if there exists a point p in the interior of ∆ such that the line segment pq
does not intersect any segment e ∈ E. We can thus imagine the line segments
of E as “blocking the view”.

For illustration, consider the simple polygon and its constrained Delaunay triangula-
tion shown in Figure 5.15. The circumcircle of the shaded triangle ∆ contains a whole
other triangle in its interior. But these points cannot be seen from ∆◦, because all
possible connecting line segments intersect the blocking polygon edge e of ∆.

∆
e

Figure 5.15: Constrained Delaunay triangulation of a simple polygon.

Theorem 5.23. For every finite point set P and every plane graph G = (P, E), there
exists a constrained Delaunay triangulation of P with respect to G.

Exercise 5.24. Prove Theorem 5.23. Also describe a polynomial algorithm to construct
such a triangulation.

Questions

20. What is a triangulation? Provide the definition and prove a basic property: every
triangulation with the same set of vertices and the same outer face has the same
number of triangles.

21. What is a triangulation of a point set? Give a precise definition.

22. Does every point set (not all points on a common line) have a triangulation?
You may, for example, argue with the scan triangulation.

23. What is a Delaunay triangulation of a set of points? Give a precise definition.

95

Chapter 5. Delaunay Triangulations Geometry: C&A 2019

24. What is the Delaunay graph of a point set? Give a precise definition and a
characterization.

25. How can you prove that every set of points (not all on a common line) has a
Delaunay triangulation? You can for example sketch the Lawson flip algorithm
and the Lifting Map, and use these to show the existence.

26. When is the Delaunay triangulation of a point set unique? Show that general
position is a sufficient condition. Is it also necessary?

27. What can you say about the “quality” of a Delaunay triangulation? Prove
that every Delaunay triangulation maximizes the smallest interior angle in the
triangulation, among the set of all triangulations of the same point set.

96

Chapter 6

Delaunay Triangulation: Incremental
Construction

In the last lecture, we have learned about the Lawson flip algorithm that computes a
Delaunay triangulation of a given n-point set P ⊆ R2 with O(n2) Lawson flips. One can
actually implement this algorithm to run in O(n2) time, and there are point sets where
it may take Ω(n2) flips.

In this lecture, we will discuss a different algorithm. The final goal is to show that
this algorithm can be implemented to run in O(n logn) time. Throughout this lecture
we assume that P is in general position (no 3 points on a line, no 4 points on a com-
mon circle), so that the Delaunay triangulation is unique (Corollary 5.19). There are
techniques to deal with non-general position, but we don’t discuss them here.

6.1 Incremental construction

The idea is to build the Delaunay triangulation of P by inserting one point after another
according to a random permutation of the remaining vertices, say p1, p2, . . . , pn.

To avoid special cases, we enhance the point set P with three artificial points p0, p−1
and p−2 “far out” such that the convex hull of P ∪ {p0, p−1, p−2} consists only of the
three artificial points. Because the convex hull of the resulting point set is a triangle;
later, we can remove these extra points and their incident edges to obtain DT(P). The
incremental algorithm starts off with the Delaunay triangulation of the three artificial
points which consists of one big triangle enclosing all other points. (In our figures, we
suppress the far-away points, since they are merely a technicality.)

For 1 6 s 6 n, let Ps := {p1, . . . , ps} and P∗s = Ps ∪ {p0, p−1, p−2}. Throughout, we
always maintain the Delaunay triangulation of the point set P∗s−1 containing the points
inserted so far, and when the next point ps comes along, we update the triangulation to
the Delaunay triangulation of P∗s. Let DT(s) denote the Delaunay triangulation of P∗s.

Now assume that we have already built DT(s−1), and we next insert ps. Here is the
outline of the update step.

97

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

ps
∆

Figure 6.1: Inserting ps into DT(s− 1): Step 1

1. Find the triangle ∆ = ∆(p, q, r) of DT(s− 1) that contains ps, and replace it with
the three triangles resulting from connecting ps with all three vertices p, q, r; see
Figure 6.1. We now have a triangulation T of P∗s.

2. Perform Lawson flips on T until DT(s) is obtained; see Figure 6.2

ps
∆

ps
∆

ps
∆

ps
∆

Figure 6.2: Inserting ps into DT(s− 1): Step 2

How to organize the Lawson flips. The Lawson flips can be organized quite systematically,
since we always know the candidates for “bad” edges that may still have to be flipped.
Initially (after step 1), only the three edges of ∆ can be bad, since these are the only
edges for which an incident triangle has changed (by inserting ps in Step 1). Each of

98

Geometry: C&A 2019 6.2. The History Graph

the three new edges is good, since the 4 vertices of its two incident triangles are not in
convex position.

Now we have the following invariant (part (a) certainly holds in the first flip):

(a) In every flip, the convex quadrilateral Q in which the flip happens has exactly two
edges incident to ps, and the flip generates a new edge incident to ps.

(b) Only the two edges of Q that are not incident to ps can become bad after the flip.

We will prove part (b) in the next lemma. The invariant then follows since (b) entails
(a) in the next flip. This means that we can maintain a queue of potentially bad edges
that we process in turn. A good edge will be removed from the queue, and a bad edge
will be flipped and replaced according to (b) with two new edges in the queue. In this
way, we never flip edges incident to ps; the next lemma proves that this is correct and
at the same time establishes part (b) of the invariant.

Lemma 6.1. Every edge incident to ps that is created during the update is an edge of
the Delaunay graph of P∗s and thus an edge that will be in DT(s). It easily follows
that edges incident to ps will never become bad during the update step.1

Proof. Let us consider one of the first three new edges, psp, say. Since the triangle
∆ has a circumcircle C strictly containing only ps (∆ is in DT(s − 1)), we can shrink
that circumcircle to a circle C ′ through ps and p with no interior points, see Figure 6.3
(a). This proves that psp is in the Delaunay graph. If pst is an edge created by a flip,
a similar argument works. The flip destroys exactly one triangle ∆ of DT(s − 1). Its
circumcircle C contains ps only, and shrinking it yields an empty circle C ′ through ps
and t. Thus, pst is in the Delaunay graph also in this case.

6.2 The History Graph

What can we say about the performance of the incremental construction? Not much yet.
First of all, we did not specify how we find the triangle ∆ of DT(s − 1) that contains
the point ps to be inserted. Doing this in the obvious way (checking all triangles) is not
good, since already the find steps would then amount to O(n2) work throughout the
whole algorithm. Here is a smarter method, based on the history graph.

Definition 6.2. For a given 1 6 s 6 n, the history graph Hs−1 of P∗s−1 is a directed
acyclic graph whose vertices are all triangles that have ever been created during
the incremental construction of DT(s − 1). There is a directed edge from ∆ to ∆ ′

whenever ∆ has been destroyed during an insertion step, ∆ ′ has been created during
the same insertion step, and ∆ overlaps with ∆ ′ in its interior.

1If such an edge was bad, it could be flipped, but then it would be “gone forever” according to the
lifting map interpretation from the previous lecture.

99

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

ps

p

∆
C′

C

(a) New edge psp incident
to ps created in Step 1

ps

∆

C′

t

C

(b) New edge pst incident
to ps created in Step 2

Figure 6.3: Newly created edges incident to ps are in the Delaunay graph

It follows that the history graph Hs−1 contains triangles of outdegrees 3, 2 and 0.
The ones of outdegree 0 are clearly the triangles of DT(s− 1).

The triangles of outdegree 3 are the ones that have been destroyed during Step 1 of
an insertion. For each such triangle ∆, its three outneighbors are the three new triangles
that have replaced it, see Figure 6.4.

The triangles of outdegree 2 are the ones that have been destroyed during Step 2 of
an insertion. For each such triangle ∆, its two outneighbors are the two new triangles
created during the flip that has destroyed ∆, see Figure 6.5.

The history graph Hs−1 can be built during the incremental construction at asymp-
totically no extra cost; but it may need extra space since it keeps all triangles ever
created. Given the history graph Hs−1, we can search for the triangle ∆ of DT(s − 1)
that contains ps, as follows. We start from the big triangle 4(p0, p−1, p−2); this one
certainly contains ps. Then we follow a directed path in the history graph. If the current
triangle still has outneighbors, we find the unique outneighbor containing ps and con-
tinue the search with this neighbor. If the current triangle has no outneighbors anymore,
it is in DT(s − 1) and contains ps—we are done. Thus, the complexity of finding the
triangle containing ps is linear on the length of the path followed in the history graph.

Types of triangles in the history graph. After each insertion of a point ps, several triangles
are created and added to the history graph. It is important to note that these triangles
come in two types: Some of them are valid Delaunay triangles of DT(s), and they survive
to the next stage of the incremental construction. Other triangles are immediately
destroyed by subsequent Lawson flips, because they are not Delaunay triangles of DT(S).

Note that, whenever a Lawson flip is performed, one of the two triangles destroyed is
always a “valid” triangle from a previous iteration, and the other one is an “ephemeral"
triangle that was created at this iteration. The ephemeral triangle is always the one that
has ps, the newly inserted point, as a vertex.

100

Geometry: C&A 2019 6.2. The History Graph

�

�

ps

ps

ps ps
ps

Figure 6.4: The history graph: one triangle gets replaced by three triangles

ps

ps
ps

ps

Figure 6.5: The history graph: two triangles get replaced by two triangles

101

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

6.3 Analysis of the algorithm

To formalize the above intuition, we observe the following.

Observation 6.3. Given DT(s − 1) and the triangle ∆ of DT(s − 1) that contains ps,
we can build DT(s) in time proportional to the degree of ps in DT(s), which is the
number of triangles of DT(s) containing ps. Moreover, the total number of triangles
created throughout this insertion is at most twice the degree of ps in DT(s).

Indeed, since every flip generates exactly one new triangle incident to ps, the number
of flips is the degree of ps minus three. Step 1 of the update takes constant time, and
since also every flip can be implemented in constant time, the observation follows.

Using this result, we can prove the following bound on the expected size of the history
graph.

Lemma 6.4. The expected number of nodes in the history graph is at most 9n+ 1.

Proof. Before start inserting points of P, our history graph consists only of the artificial
triangle 4(p0p−1p−2). In the s-th iteration of the algorithm, we insert the point ps. At
this point, we first split the triangle 4(pipjpk) containing ps into three new triangles,
i, j, k < s. This splitting adds three new vertices to the history graph, and three new
Delaunay edges incident to ps, namely pspi, pspj and pspk. In addition, we use Lawson
flips until obtaining DT(s). By Observation 6.3, we know that if ps has degree ds in
DT(s), then the total number of triangles created throughout the insertion of ps is at
most 2ds. Here is where we use backwards analysis to bound the value of the random
variable ds. Because DT(s) is a triangulation with s+ 3 points, it has 3(s+ 3)− 6 edges.
If we exclude the three edges of the convex hull, we get that the sum of the degree of all
interior vertices in DT(s) adds up to at most 2(3(s+ 3) − 9) = 6s. This means, that the
expected degree of a random point of Ps (i.e., not including p0, p−1 or p−2) is at most
6. In summary, we get that

E[number of triangles created in iteration s] 6 E[2ds−3] = 2E[ds]−3 6 2 ·6−3 = 9.

Because in the first step we create only one triangle, namely 4(p0p−1p−2), and since
the expected number of triangles created in each insertion step is at most 9, we get by
linearity of expectation that the total expected number of triangles created is at most
9n+ 1.

Note that we cannot say that all insertions create a number of triangle close to 9, i.e.,
there could be some very costly insertions throughout. However, the average is constant
which provides us with a linear expected total value. As a summation of independent
random variables, the size of the history graph is indeed concentrated around its mean,
which can be shown using standard Chernoff bounds. We proceed now to prove our main
result.

102

Geometry: C&A 2019 6.3. Analysis of the algorithm

Theorem 6.5. The Delaunay triangulation of a set P of n points in the plane can be
computed in O(n logn) expected time, using O(n) expected storage.

Proof. We have already established the correctness of the algorithm. For the storage, we
note that only the history graph could use more than linear storage, however Lemma 6.4
proves that its expected size is O(n) yielding the desired bound on the storage.

To bound the running time of the algorithm, we first ignore the time used during the
point location queries, i.e., the time used during the insertion of each point to find the
triangle that contains it. Ignoring this, the running time of the algorithm is proportional
to the number of triangles created. From Lemma 6.4 we know that only O(n) triangles
are created in expectation. That is, only O(n) additional expected time is needed.

It remains to account for the point location queries. That is, given 1 6 s 6 n, we
are interested in the expected time needed to locate ps in the triangulation DT(s −
1). Recall that we do this by using the history graph. We start from its root, the
triangle 4(p0, p−1, p−2), and then traverse a path in this graph that finishes on a node
corresponding to the triangle of DT(s − 1) that contains ps. Since the out-degree of
all nodes in the history graph is O(1), the running time of the point location query is
proportional to the number of nodes visited. Recall that each internal node of this path
corresponds to a triangle that was created at an earlier stage, but that has been destroyed
and contains ps. A triangle 4 could only be already destroyed if a point pl lying in its
circumcircle was inserted before ps. Because of this, we introduce the following notation.
Given a triangle 4, let K(4) be the subset of points of P that lie in the circumcircle
of 4. With this notation, we can say that during the insertion of ps, the time needed
to locate it in DT(s− 1) is at most linear on the number of triangles 4 with ps ∈ K(4).
One can see that each triangle 4 can be charged at most once for each of the points
of P in K(4). Therefore, the total running time for all point location steps during the
construction is

O

(
n+
∑
4

|K(4)|

)
,

where the summation is taken over all Delaunay triangles 4 created by the algorithm.
We shall prove below that the expected value of this expression is O(n logn), which will
conclude our proof.

It remains to provide a bound on the expected size of the sets K(4) throughout the
running time of the algorithm. Note that for DT(1), we would expect K(4) to be roughly
n for each of its triangles, while for DT(n), we know that K(4) = 0 for all its triangles.
In the middle, we would like the values to interpolate nicely giving something close to
K(4) ≈ O(n/s) for the triangles in DT(s). While this is not exactly the case, it provides
a good intuition. We will show that the average behaves in this way.

Lemma 6.6. It holds that

E

[
n+
∑
4

|K(∆)|

]
= O(n logn),

103

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

where the summation is taken over all Delaunay triangles 4 created by the algo-
rithm.

Proof. Let τs be the set of triangles of DT(s) that are not part of DT(s − 1), i.e., the
set of triangles incident to ps in DT(s). Using this notation, we first rewrite the above
expression as follows:∑

4
|K(∆)| =

n∑
s=1

(∑
4∈τs

|K(4)|

)
. (6.7)

This holds because each triangle created by the algorithm is created in some iteration
and hence, belongs to some set τs for some 1 6 s 6 n.

For a point q in the plane, let ϕs(q) denote the number of triangles 4 of DT(s) such
that q ∈ K(4). In other words, we can think of placing the circumcircles of all triangles
of DT(s) in the plane and then count how many circles enclose q. Let also ϕ∗s(q) denote
the number of triangles 4 of τs such that q ∈ K(4). That is, we place the circumcircles
of all triangles incident to ps in DT(s) and count how many of them enclose q.

Then, we notice that for 1 6 s 6 n, the summation
∑
4∈τs |K(4)| counts the number

of points of P that lie inside the circumcircles of the triangles in τs. Because these
circumcircles belong to DT(s), they are empty of points of Ps, and hence, all points
lying inside these circumcircles belong to P \ Ps. Thus, we get that

∑
4∈τs

|K(4)| =
∑

q∈P\Ps

ϕ∗s(q). (6.8)

To analyze the expected value of ϕ∗s(q), we use conditional expectation. That is,
we condition on Ps being a specific set, and then later, take the weighted average of all
those expectations. Thus, we fix the set Ps and assume that Ps = Ps for some arbitrary
subset Ps of P with s elements. With this assumption, the triangulation DT(s) is fixed
and hence, ϕ∗s(q) depends only on which among the elements of Ps = Ps is the last one.
Since the order of insertion of the elements of Ps is random (random permutation chosen
uniformly at random), we get that for a triangle 4 of DT(s), this triangle is incident
to the random point ps with probability 3/s. Therefore, if we let χ4,s be an indicator
random variable that is one if and only if 4 is incident to ps (i.e., 4 ∈ τs), we get that
Pr[χ4,s = 1] = 3/s. Using this, we get that for a point q ∈ P \ Ps,

E[ϕ∗s(q)] =
∑

q ∈ K(4),
4 ∈DT(s)

E[χ4,s ·ϕs(q)] =
3

s
·ϕs(q).

Plugging this into (6.8) and taking expectation, we get that by linearity of expecta-
tion, the following holds

E

[∑
4∈τs

|K(4)|

]
=
∑

q∈P\Ps

E[ϕ∗s(q)] =
3

s

 ∑
q∈P\Ps

ϕs(q)

 . (6.9)

104

Geometry: C&A 2019 6.3. Analysis of the algorithm

Additionally, because any q ∈ P \ Ps is equally likely to be ps+1, i.e., each point of
P \ Ps is ps+1 with probability 1/(n− s), we have that

E[ϕs(ps+1)] =
1

n− s

 ∑
q∈P\Ps

ϕs(q)

 .
Which implies by arranging the terms that∑

q∈P\Ps

ϕs(q) = (n− s) · E[ϕs(ps+1)].

Plugging this back into (6.9), we get that

E

[∑
4∈τs

|K(4)|

]
=
3(n− s)

s
E[ϕs(ps+1)]. (6.10)

Recall that ϕs(ps+1) is the number of triangles 4 of DT(s) whose circumcircle en-
closes ps+1, i..e, ps+1 ∈ K(4). However, these triangles of DT(s) are exactly the ones
that will be destroyed by the insertion of ps+1. Moreover, by Observation 6.3, the tri-
angles destroyed are at most twice the number of triangles of DT(s + 1) incident to
ps+1, i..e., the number of triangles in τs+1. Therefore, we get that ϕs(ps+1) = O(|τs+1|).
Plugging this into (6.10), we get that

E

[∑
4∈τs

|K(4)|

]
= O

(
n− s

s
· E[|τs+1|]

)
.

Recall that so far, we have assumed that Ps = Ps. To remove this assumption, we can
take the average over all possible different sets Ps and all permutations of P. Since all
sets and all permutations are equally likely, the average of all of them stays the same.
However, now that we are not conditioning the probability, we know that E[τs+1] 6 9

by the proof of Lemma 6.4. Thus, the previous expression yields that

E

[∑
4∈τs

|K(4)|

]
= O

(
n− s

s

)
.

Summing over all values of s and by linearity of expectation, we get the expected value
of (6.7)

E

[
n∑
s=1

(∑
4∈τs

|K(4)|

)]
= O

(
n∑
s=1

n− s

s

)
6 O

(
n

n∑
s=1

1

s

)
= O(n logn).

105

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

Exercise 6.11. For a sequence of n pairwise distinct numbers y1, . . . , yn consider the
sequence of pairs (min{y1, . . . , yi},max{y1, . . . , yi})i=0,1,...,n (min ∅ := +∞,max ∅ :=
−∞). How often do these pairs change in expectation if the sequence is permuted
randomly, each permutation appearing with the same probability? Determine the
expected value.

Exercise 6.12. Given a set P of n points in convex position represented by the clockwise
sequence of the vertices of its convex hull, provide an algorithm to compute its
Delaunay triangulation in O(n) time.

Questions

28. How can we efficiently compute the three artificial points p0, p−1 and p−2
whose convex hull contains all points of P, while keeping their coordinates
“small”.

29. Describe the algorithm for the incremental construction of DT(P): how do we
find the triangle containing the point ps to be inserted into DT(s− 1)? How do we
transform DT(Ps−1) into DT(s)? How many steps does the latter transformation
take, in terms of DT(s)?

30. What are the two types of triangles that the history graph contains?

106

Chapter 7

Voronoi Diagrams

7.1 Post Office Problem

Suppose there are n post offices p1, . . . pn in a city. Someone who is located at a position
q within the city would like to know which post office is closest to him.1 Modeling the
city as a planar region, we think of p1, . . . pn and q as points in the plane. Denote the
set of post offices by P = {p1, . . . pn}.

Figure 7.1: Closest post offices for various query points.

While the locations of post offices are known and do not change so frequently, we do
not know in advance for which—possibly many—query locations the closest post office
is to be found. Therefore, our long term goal is to come up with a data structure on top
of P that allows to answer any possible query efficiently. The basic idea is to apply a
so-called locus approach : we partition the query space into regions on which the answer
is the same. In our case, this amounts to partition the plane into regions such that for
all points within a region the same point from P is closest (among all points from P).

1Another—possibly historically more accurate—way to think of the problem: You want to send a letter
to a person living at q. For this you need to know the corresponding zip code, which is the code of the
post office closest to q.

107

Chapter 7. Voronoi Diagrams Geometry: C&A 2019

As a warmup, consider the problem for two post offices pi, pj ∈ P. For which query
locations is the answer pi rather than pj? This region is bounded by the bisector of pi
and pj, that is, the set of points which have the same distance to both points.

Proposition 7.1. For any two distinct points in Rd the bisector is a hyperplane, that
is, in R2 it is a line.

Proof. Let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two points in Rd. The bisector of
p and q consists of those points x = (x1, . . . , xd) for which

||p− x|| = ||q− x|| ⇐⇒ ||p− x||2 = ||q− x||2

⇐⇒
d∑
i=1

(pi − xi)
2 =

d∑
i=1

(qi − xi)
2

⇐⇒
d∑
i=1

pi
2 − 2

d∑
i=1

pixi +

d∑
i=1

xi
2 =

d∑
i=1

qi
2 − 2

d∑
i=1

qixi +

d∑
i=1

xi
2

⇐⇒
d∑
i=1

pi
2 −

d∑
i=1

qi
2 = 2

d∑
i=1

(pi − qi)xi

⇐⇒ ||p||
2 − ||q||

2 = 2(p− q)>x .

As p and q are distinct, this is the equation of a hyperplane.

pi

pj

H(pi, pj)

Figure 7.2: The bisector of two points.

Denote by H(pi, pj) the closed halfspace bounded by the bisector of pi and pj that
contains pi. In R2, the region H(pi, pj) is a halfplane; see Figure 7.2.

Exercise 7.2.

a) What is the bisector of a line ` and a point p ∈ R2 \ `, that is, the set of all
points x ∈ R2 with ||x− p|| = ||x− `|| = minq∈` ||x− q||?

b) For two points p 6= q ∈ R2, what is the region that contains all points whose
distance to p is exactly twice their distance to q?

108

Geometry: C&A 2019 7.2. Voronoi Diagram

7.2 Voronoi Diagram

As it turns out, understanding the situation for two points essentially tells us everything
we need to know for the general case. The structure obtained by applying the locus
approach to the nearest neighbor problem is called Voronoi diagram. In fact, this
approach works for a variety of distance functions and spaces [2, 7]. So, Voronoi diagram
should be considered a family of structures rather than a single specific one. Without
further qualification, the underlying distance function is the Euclidean metric. In the
following we define and study the Voronoi diagram for a given set P = {p1, . . . , pn} of
points in R2.

Definition 7.3. For pi ∈ P denote the Voronoi cell VP(i) of pi by

VP(i) :=
{
q ∈ R2 : ||q− pi|| 6 ||q− p|| for all p ∈ P

}
.

Proposition 7.4.

VP(i) =
⋂
j6=i
H(pi, pj) .

Proof. For j 6= i we have ||q− pi|| 6 ||q− pj|| ⇐⇒ q ∈ H(pi, pj).

Corollary 7.5. VP(i) is non-empty and convex.

Proof. According to Proposition 7.4, the region VP(i) is the intersection of a finite
number of halfplanes and hence convex. As pi ∈ VP(i), we have VP(i) 6= ∅.

Observe that every point of the plane lies in some Voronoi cell but no point lies in
the interior of two Voronoi cells. Therefore these cells form a subdivision of the plane
(a partition2 into interior-disjoint simple polygons). See Figure 7.3 for an example.

Figure 7.3: Example: The Voronoi diagram of a point set.

2Strictly speaking, to obtain a partition, we treat the shared boundaries of the polygons as separate
entities.

109

Chapter 7. Voronoi Diagrams Geometry: C&A 2019

Definition 7.6. The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn} of points in R2

is the subdivision of the plane induced by the Voronoi cells VP(i), for i = 1, . . . , n.
Denote by VV(P) the set of vertices, by VE(P) the set of edges, and by VR(P) the
set of regions (faces) of VD(P).

Lemma 7.7. For every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of at least three edges from VE(P);

b) v is incident to at least three regions from VR(P);

c) v is the center of a circle C(v) through at least three points from P such that

d) D(v)◦ ∩ P = ∅, where D(v) denotes the disk bounded by C(v).

Proof. Consider a vertex v ∈ VV(P). As all Voronoi cells are convex, k > 3 of them
must be incident to v. This proves Part a) and b).

Without loss of generality let these cells be VP(i), for 1 6 i 6 k; see Figure 7.4.
Denote by ei, 1 6 i 6 k, the edge incident to v that bounds VP(i) and VP((imodk)+1).

For any i = 1, . . . , k we have v ∈ ei ⇒ ||v − pi|| = ||v − p(imodk)+1||. In other words,
p1, p2, . . . , pk are cocircular, which proves Part c).

Part d): Suppose there exists a point p` ∈ D(v)◦. Then the vertex v is closer to p`
than it is to any of p1, . . . , pk, in contradiction to the fact that v is contained in all of
VP(1), . . . ,VP(k).

v

e2

ek−1

eke1

VP(k)

VP(1)

VP(2)

. . .

Figure 7.4: Voronoi regions around v.

Corollary 7.8. If P is in general position (no four points from P are cocircular), then
for every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of exactly three edges from VE(P);

b) v is incident to exactly three regions from VR(P);

c) v is the center of a circle C(v) through exactly three points from P such that

110

Geometry: C&A 2019 7.2. Voronoi Diagram

d) D(v)◦ ∩ P = ∅, where D(v) denotes the disk bounded by C(v).

Lemma 7.9. There is an unbounded Voronoi edge bounding VP(i) and VP(j) ⇐⇒
pipj ∩P = {pi, pj} and pipj ⊆ ∂conv(P), where the latter denotes the boundary of the
convex hull of P.

Proof. Denote by bi,j the bisector of pi and pj, and let D denote the family of disks
centered at some point on bi,j and passing through pi (and pj). There is an unbounded
Voronoi edge bounding VP(i) and VP(j) ⇐⇒ there is a ray ρ ⊂ bi,j such that ||r−pk|| >
||r−pi|| (= ||r−pj||), for every r ∈ ρ and every pk ∈ P with k /∈ {i, j}. Equivalently, there
is a ray ρ ⊂ bi,j such that for every point r ∈ ρ the disk C ∈ D centered at r does not
contain any point from P in its interior (Figure 7.5).

The latter statement implies that the open halfplane H, whose bounding line passes
through pi and pj and such that H contains the infinite part of ρ, contains no point
from P in its interior. Therefore, pipj appears on ∂conv(P) and pipj does not contain
any pk ∈ P, for k 6= i, j.

pi pj

ρ

H

r0

r

bi,j

C

D

Figure 7.5: The correspondence between pipj appearing on ∂conv(P) and a family D

of empty disks centered at the bisector of pi and pj.

Conversely, suppose that pipj appears on ∂conv(P) and pipj ∩ P = {pi, pj}. Then
some halfplane H whose bounding line passes through pi and pj contains no point from
P in its interior. In particular, the existence of H together with pipj∩P = {pi, pj} implies
that there is some disk C ∈ D such that C ∩ P = {pi, pj}. Denote by r0 the center of C
and let ρ denote the ray starting from r0 along bi,j such that the infinite part of ρ is
contained in H. Consider any disk D ∈ D centered at a point r ∈ ρ and observe that
D \H ⊆ C \H. As neither H nor C contain any point from P in their respective interior,
neither does D. This holds for every D, and we have seen above that this statement is
equivalent to the existence of an unbounded Voronoi edge bounding VP(i) and VP(j).

111

Chapter 7. Voronoi Diagrams Geometry: C&A 2019

7.3 Duality

A straight-line dual of a plane graph G is a graph G ′ defined as follows: Choose a point
for each face of G and connect any two such points by a straight edge, if the corresponding
faces share an edge of G. Observe that this notion depends on the embedding; that
is why the straight-line dual is defined for a plane graph rather than for an abstract
graph. In general, G ′ may have edge crossings, which may also depend on the choice
of representative points within the faces. However, for Voronoi diagrams there is a
particularly natural choice of representative points such that G ′ is plane: the points
from P.

Theorem 7.10 (Delaunay [3]). The straight-line dual of VD(P) for a set P ⊂ R2 of n > 3
points in general position (no three points from P are collinear and no four points
from P are cocircular) is a triangulation: the unique Delaunay triangulation of P.

Proof. By Lemma 7.9, the convex hull edges appear in the straight-line dual T of VD(P)
and they correspond exactly to the unbounded edges of VD(P). All remaining edges
of VD(P) are bounded, that is, both endpoints are Voronoi vertices. Consider some
v ∈ VV(P). According to Corollary 7.8(b), v is incident to exactly three Voronoi regions,
which, therefore, form a triangle4(v) in T . By Corollary 7.8(d), the circumcircle of4(v)
does not contain any point from P in its interior. Hence 4(v) appears in the (unique by
Corollary 5.19) Delaunay triangulation of P.

Conversely, for any triangle pipjpk in the Delaunay triangulation of P, by the empty
circle property the circumcenter c of pipjpk has pi, pj, and pk as its closest points from
P. Therefore, c ∈ VV(P) and—as above—the triangle pipjpk appears in T .

Figure 7.6: The Voronoi diagram of a point set and its dual Delaunay triangulation.

It is not hard to generalize Theorem 7.10 to general point sets. In this case, a
Voronoi vertex of degree k is mapped to a convex polygon with k cocircular vertices.
Any triangulation of such a polygon yields a Delaunay triangulation of the point set.

112

Geometry: C&A 2019 7.4. Lifting Map

Corollary 7.11. |VE(P)| 6 3n− 6 and |VV(P)| 6 2n− 5.

Proof. Every edge in VE(P) corresponds to an edge in the dual Delaunay triangulation.
The latter is a plane graph on n vertices, which by Corollary 2.5 has at most 3n−6 edges
and at most 2n− 4 faces. Only the bounded faces correspond to a vertex in VD(P).

Corollary 7.12. For a set P ⊂ R2 of n points, the Voronoi diagram of P can be con-
structed in expected O(n logn) time and O(n) space.

Proof. We have seen that a Delaunay triangulation T for P can be obtained using ran-
domized incremental construction in the given time and space bounds. As T is a plane
graph, its number of vertices, edges, and faces all are linear in n. Therefore, the straight-
line dual of T—which by Theorem 7.10 is the desired Voronoi diagram—can be computed
in O(n) additional time and space.

Exercise 7.13. Consider the Delaunay triangulation T for a set P ⊂ R2 of n > 3 points
in general position. Prove or disprove:

a) Every edge of T intersects its dual Voronoi edge.

b) Every vertex of VD(P) is contained in its dual Delaunay triangle.

Exercise 7.14. Given a plane graph that forms the Voronoi diagram a some unknown
point set P. Can you compute P along with the Delaunay triangulation of P in
linear time?

7.4 Lifting Map

Recall the lifting map that we used in Section 5.3 to prove that the Lawson Flip Algorithm
terminates. Denote by U : z = x2 + y2 the unit paraboloid in R3. The lifting map
` : R2 → U with ` : p = (px, py) 7→ (px, py, px

2 + py
2) is the projection of the x/y-plane

onto U in direction of the z-axis.
For p ∈ R2 let Hp denote the plane of tangency to U in `(p). Denote by hp : R2 → Hp

the projection of the x/y-plane onto Hp in direction of the z-axis (see Figure 7.7).

Lemma 7.15. ||`(q) − hp(q)|| = ||p− q||2, for any points p, q ∈ R2.
Exercise 7.16. Prove Lemma 7.15. Hint: First determine the equation of the tangent
plane Hp to U in `(p).

Theorem 7.17. For p = (px, py) ∈ R2 denote by Hp the plane of tangency to the
unit paraboloid U = {(x, y, z) : z = x2 + y2} ⊂ R3 in `(p) = (px, py, px

2 + py
2).

Let H(P) :=
⋂
p∈P H

+
p denote the intersection of all halfspaces above the planes Hp,

for p ∈ P. Then the vertical projection of ∂H(P) onto the x/y-plane forms the
Voronoi Diagram of P (the faces of ∂H(P) correspond to Voronoi regions, the edges
to Voronoi edges, and the vertices to Voronoi vertices).

Proof. For any point q ∈ R2, the vertical line through q intersects every plane Hp,
p ∈ P. By Lemma 7.15 the topmost plane intersected belongs to the point from P that
is closest to q.

113

Chapter 7. Voronoi Diagrams Geometry: C&A 2019

p

U

`(p)

q

`(q)

hp(q)

Hp

Figure 7.7: Lifting map interpretation of the Voronoi diagram in a two-dimensional
projection.

7.5 Planar Point Location

One last bit is still missing in order to solve the post office problem optimally.

Theorem 7.18. Given a triangulation T for a set P ⊂ R2 of n points, one can build in
O(n) time an O(n) size data structure that allows for any query point q ∈ conv(P)
to find in O(logn) time a triangle from T containing q.

The data structure we will employ is known as Kirkpatrick’s hierarchy. But before
discussing it in detail, let us put things together in terms of the post office problem.

Corollary 7.19 (Nearest Neighbor Search). Given a set P ⊂ R2 of n points, one can
build in expected O(n logn) time an O(n) size data structure that allows for any
query point q ∈ conv(P) to find in O(logn) time a nearest neighbor of q among the
points from P.

Proof. First construct the Voronoi Diagram V of P in expected O(n logn) time. It has
exactly n convex faces. Every unbounded face can be cut by the convex hull boundary
into a bounded and an unbounded part. As we are concerned with query points within
conv(P) only, we can restrict our attention to the bounded parts.3 Any convex polygon
can easily be triangulated in time linear in its number of edges (= number of vertices).
As V has at most 3n − 6 edges and every edge appears in exactly two faces, V can
be triangulated in O(n) time overall. Label each of the resulting triangles with the
point from p, whose Voronoi region contains it, and apply the data structure from
Theorem 7.18.

3We even know how to decide in O(logn) time whether or not a given point lies within conv(P), see
Exercise 4.25.

114

Geometry: C&A 2019 7.6. Kirkpatrick’s Hierarchy

7.6 Kirkpatrick’s Hierarchy

We will now develop a data structure for point location in a triangulation, as described
in Theorem 7.18. For simplicity we assume that the triangulation T we work with is
a maximal planar graph, that is, the outer face is a triangle as well. This can easily
be achieved by an initial normalization step that puts a huge triangle Th around T and
triangulates the region in between Th and T (in linear time—how?).

The main idea for the data structure is to construct a hierarchy T0,. . . ,Th of triangu-
lations, such that

� T0 = T ,

� the vertices of Ti are a subset of the vertices of Ti−1, for i = 1, . . . , h, and

� Th is a single triangle only.

Search. For a query point x we can find a triangle from T that contains x as follows.

Search(x ∈ R2)

1. For i = h, h− 1, . . . , 0: Find a triangle ti from Ti that contains x.

2. return t0.

This search is efficient under the following conditions.

(C1) Every triangle from Ti intersects only few (6 c) triangles from Ti−1. (These will
then be connected via the data structure.)

(C2) h is small (6 d logn).

Proposition 7.20. The search procedure described above needs 6 3cd logn = O(logn)
orientation tests.

Proof. For every Ti, 0 6 i < h, at most c triangles are tested as to whether or not they
contain x. Using three orientation tests one can determine whether or not a triangle
contains a given point.

Thinning. Removing a vertex v and all its incident edges from a triangulation creates a
non-triangulated hole that forms a star-shaped polygon since all points are visible from
v (the star-point). Here we remove vertices of constant degree only and therefore these
polygons are of constant size. But even if they were not, it is not hard to triangulate a
star-shaped polygon in linear time.

Lemma 7.21. A star-shaped polygon, given as a sequence of n > 3 vertices and a
star-point, can be triangulated in O(n) time.

115

Chapter 7. Voronoi Diagrams Geometry: C&A 2019

Exercise 7.22. Prove Lemma 7.21.

As a side remark, the kernel of a simple polygon, that is, the (possibly empty) set
of all star-points, can be constructed in linear time as well [8]. A point in the kernel can
also be found using linear programming.

Our working plan is to obtain Ti from Ti−1 by removing several independent (pairwise
non-adjacent) vertices and re-triangulating. These vertices should

a) have small degree (otherwise the degree within the hierarchy gets too large, that
is, we need to test too many triangles on the next level) and

b) be many (otherwise the height h of the hierarchy gets too large).

The following lemma asserts the existence of a sufficiently large set of independent
small-degree vertices in every triangulation.

Lemma 7.23. In every triangulation of n points in R2 there exists an independent set
of at least dn/18e vertices of maximum degree 8. Moreover, such a set can be found
in O(n) time.

Proof. Let T = (V, E) denote the graph of the triangulation, which we consider as an
abstract graph in the following. We may suppose that T is maximal planar, that is, the
outer face is a triangle. (Otherwise use Theorem 2.27 to combinatorially triangulate T
arbitrarily. An independent set in the resulting graph T ′ is also independent in T and the
degree of a vertex in T ′ is at least as large as its degree in T .) For n = 3 the statement
is true. Let n > 4.

By the Euler formula we have |E| = 3n− 6, that is,∑
v∈V

degT (v) = 2|E| = 6n− 12 < 6n.

Let W ⊆ V denote the set of vertices of degree at most 8. Claim: |W| > n/2. Suppose
|W| 6 n/2. By Theorem 2.28 we know that T is 3-connected and so every vertex has
degree at least three. Therefore∑

v∈V
degT (v) =

∑
v∈W

degT (v) +
∑

v∈V\W

degT (v) > 3|W|+ 9|V \W|

= 3|W|+ 9(n− |W|) = 9n− 6|W| > 9n− 3n = 6n,

in contradiction to the above.
Construct an independent set U in T as follows (greedily): As long as W 6= ∅, add an

arbitrary vertex v ∈W to U and remove v and all its neighbors from W. Assuming that
T is represented so that we can obtain the neighborhood of a vertex v in degT (v) time
(for instance, using adjacency lists), both W and U can be computed in O(n) time.

Obviously U is independent and all vertices in U have degree at most 8. At each
selection step at most 9 vertices are removed from W. Therefore |U| > d(n/2)/9e =
dn/18e.

116

Geometry: C&A 2019 7.6. Kirkpatrick’s Hierarchy

Proof. (of Theorem 7.18)
Construct the hierarchy T0, . . . Th with T0 = T as follows. Obtain Ti from Ti−1 by re-
moving an independent set U as in Lemma 7.23 and re-triangulating the resulting holes.
By Lemma 7.21 and Lemma 7.23 every step is linear in the number |Ti| of vertices in Ti.
The total cost for building the data structure is thus

h∑
i=0

α|Ti| 6
h∑
i=0

αn

(
1−

1

18

)i
6

h∑
i=0

αn(17/18)i < αn

∞∑
i=0

(17/18)i = 18αn ∈ O(n),

for some constant α. Similarly the space consumption is linear.
The number of levels amounts to h = log18/17 n < 12.2 logn. Thus by Proposi-

tion 7.20 the search needs at most 3 · 8 · log18/17 n < 292 logn orientation tests.

Improvements. As the name suggests, the hierarchical approach discussed above is due
to David Kirkpatrick [6]. The constant 292 that appears in the search time is somewhat
large. There has been a whole line of research trying to improve it using different
techniques.

� Sarnak and Tarjan [9]: 4 logn.

� Edelsbrunner, Guibas, and Stolfi [4]: 3 logn.

� Goodrich, Orletsky, and Ramaiyer [5]: 2 logn.

� Adamy and Seidel [1]: 1 logn+ 2
√
logn+O(4

√
logn).

Exercise 7.24. Let {p1, p2, . . . , pn} be a set of points in the plane, which we call obsta-
cles. Imagine there is a disk of radius r centered at the origin which can be moved
around the obstacles but is not allowed to intersect them (touching the boundary is
ok). Is it possible to move the disk out of these obstacles? See the example depicted
in Figure 7.8 below.

More formally, the question is whether there is a (continuous) path γ : [0, 1] −→
R2 with γ(0) = (0, 0) and ‖γ(1)‖ > max{‖p1‖, . . . , ‖pn‖}, such that at any time
t ∈ [0, 1] and ‖γ(t) − pi‖ > r, for any 1 6 i 6 n. Describe an algorithm to decide
this question and to construct such a path—if one exists—given arbitrary points
{p1, p2, . . . , pn} and a radius r > 0. Argue why your algorithm is correct and analyze
its running time.

Exercise 7.25. This exercise is about an application from Computational Biology:
You are given a set of disks P = {a1, .., an} in R2, all with the same radius ra > 0.
Each of these disks represents an atom of a protein. A water molecule is represented
by a disc with radius rw > ra. A water molecule cannot intersect the interior of
any protein atom, but it can be tangent to one. We say that an atom ai ∈ P is
accessible if there exists a placement of a water molecule such that it is tangent to
ai and does not intersect the interior of any other atom in P. Given P, find an
O(n logn) time algorithm which determines all atoms of P that are inaccessible.

117

Chapter 7. Voronoi Diagrams Geometry: C&A 2019

r

(0, 0)

pi

Figure 7.8: Motion planning: Illustration for Exercise 7.24.

Exercise 7.26. Let P ⊂ R2 be a set of n points. Describe a data structure to find in
O(logn) time a point in P that is furthest from a given query point q among all
points in P.

Exercise 7.27. Show that the bounds given in Theorem 7.18 are optimal in the alge-
braic computation tree model.

Questions

31. What is the Voronoi diagram of a set of points in R2? Give a precise definition
and explain/prove the basic properties: convexity of cells, why is it a subdivision
of the plane?, Lemma 7.7, Lemma 7.9.

32. What is the correspondence between the Voronoi diagram and the Delaunay
triangulation for a set of points in R2? Prove duality (Theorem 7.10) and
explain where general position is needed.

33. How to construct the Voronoi diagram of a set of points in R2? Describe an
O(n logn) time algorithm, for instance, via Delaunay triangulation.

34. How can the Voronoi diagram be interpreted in context of the lifting map?
Describe the transformation and prove its properties to obtain a formulation of the
Voronoi diagram as an intersection of halfspaces one dimension higher.

35. What is the Post-Office Problem and how can it be solved optimally? De-
scribe the problem and a solution using linear space, O(n logn) preprocessing, and
O(logn) query time.

36. How does Kirkpatrick’s hierarchical data structure for planar point location
work exactly? Describe how to build it and how the search works, and prove the

118

Geometry: C&A 2019 7.6. Kirkpatrick’s Hierarchy

runtime bounds. In particular, you should be able to state and prove Lemma 7.23
and Theorem 7.18.

References

[1] Udo Adamy and Raimund Seidel, On the exaxt worst case query complexity of planar
point location. J. Algorithms, 37, (2000), 189–217.

[2] Franz Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv., 23, 3, (1991), 345–405.

[3] Boris Delaunay, Sur la sphère vide. A la memoire de Georges Voronoi. Izv. Akad.
Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 6, (1934), 793–800.

[4] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi, Optimal point location
in a monotone subdivision. SIAM J. Comput., 15, 2, (1986), 317–340.

[5] Michael T. Goodrich, Mark W. Orletsky, and Kumar Ramaiyer, Methods for achiev-
ing fast query times in point location data structures. In Proc. 8th ACM-SIAM
Sympos. Discrete Algorithms, pp. 757–766, 1997.

[6] David G. Kirkpatrick, Optimal search in planar subdivisions. SIAM J. Comput., 12,
1, (1983), 28–35.

[7] Rolf Klein, Concrete and abstract Voronoi diagrams , vol. 400 of Lecture Notes
Comput. Sci., Springer, 1989.

[8] Der-Tsai Lee and Franco P. Preparata, An optimal algorithm for finding the kernel
of a polygon. J. ACM, 26, 3, (1979), 415–421.

[9] Neil Sarnak and Robert E. Tarjan, Planar point location using persistent search trees.
Commun. ACM, 29, 7, (1986), 669–679.

119

https://doi.org/10.1006/jagm.2000.1101
https://doi.org/10.1006/jagm.2000.1101
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
http://mi.mathnet.ru/eng/izv4937
https://doi.org/10.1137/0215023
https://doi.org/10.1137/0215023
http://doi.acm.org/10.1145/314161.314438
http://doi.acm.org/10.1145/314161.314438
https://doi.org/10.1137/0212002
https://doi.org/10.1007/3-540-52055-4
https://doi.org/10.1145/322139.322142
https://doi.org/10.1145/322139.322142
https://doi.org/10.1145/6138.6151

Chapter 8

Line Arrangements

During the course of this lecture we encountered several situations where it was conve-
nient to assume that a point set is “in general position”. In the plane, general position
usually amounts to no three points being collinear and/or no four of them being cocircu-
lar. This raises an algorithmic question: How can we test for n given points whether or
not three of them are collinear? Obviously, we can test all triples in O(n3) time. Can we
do better? Yes, we can! Using a detour through the so-called dual plane, we will see that
this problem can be solved in O(n2) time. However, the exact algorithmic complexity
of this innocent-looking problem is not known. In fact, to determine this complexity is
one of the major open problems in theoretical computer science.

We will get back to the complexity theoretic problems and ramifications at the end
of this chapter. But first let us discuss how to obtain a quadratic time algorithm to test
whether n given points in the plane are in general position. This algorithm is a nice ap-
plication of the projective duality transform, as defined below. Such transformations are
very useful because they allow us to gain a new perspective on a problem by formulating
it in a different but equivalent form. Sometimes such a dual form of the problem is easier
to work with and—given that it is equivalent to the original primal form—any solution
to the dual problem can be translated back into a solution to the primal problem.

So what is this duality transform about? Observe that points and hyperplanes in Rd

are very similar objects, given that both can be described using d coordinates/parameters.
It is thus tempting to match these parameters to each other and so create a mapping
between points and hyperplanes. In R2 hyperplanes are lines and the standard projec-
tive duality transform maps a point p = (px, py) to the line p∗ : y = pxx − py and a
non-vertical line g : y = mx+ b to the point g∗ = (m,−b).

Proposition 8.1. The standard projective duality transform is

� incidence preserving: p ∈ g ⇐⇒ g∗ ∈ p∗ and

� order preserving: p is above g ⇐⇒ g∗ is above p∗.

Exercise 8.2. Prove Proposition 8.1.

120

Geometry: C&A 2019 8.1. Arrangements

Exercise 8.3. Describe the image of the following point sets under this mapping

a) a halfplane

b) k > 3 collinear points

c) a line segment

d) the boundary points of the upper convex hull of a finite point set.

Another way to think of duality is in terms of the parabola P : y = 1
2
x2. For a point

p on P, the dual line p∗ is the tangent to P at p. For a point p not on P, consider the
vertical projection p ′ of p onto P: the slopes of p∗ and p ′∗ are the same, just p∗ is shifted
by the difference in y-coordinates.

p

p∗

q

q∗

`∗

`

P

Figure 8.1: Point ↔ line duality with respect to the parabola P : y = 1
2
x2.

The question of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a point. This question in
turn we will answer with the help of line arrangements, as defined below.

8.1 Arrangements

The subdivision of the plane induced by a finite set L of lines is called the arrangement
A(L). We may imagine the creation of this subdivision as a recursive process, defined
by the given set L of lines. As a first step, remove all lines (considered as point sets)
from the plane R2. What remains of R2 are a number of open connected components
(possibly only one), which we call the (2-dimensional) cells of the subdivision. In the
next step, from every line in L remove all the remaining lines (considered as point sets).
In this way every line is split into a number of open connected components (possibly only
one), which collectively form the (1-dimensional cells or) edges of the subdivision. What

121

Chapter 8. Line Arrangements Geometry: C&A 2019

remains of the lines are the (0-dimensional cells or) vertices of the subdivision, which are
intersection points of lines from L.

Observe that all cells of the subdivision are intersections of halfplanes and thus con-
vex. A line arrangement is simple if no two lines are parallel and no three lines meet in
a point. Although lines are unbounded, we can regard a line arrangement a bounded
object by (conceptually) putting a sufficiently large box around that contains all vertices.
Such a box can be constructed in O(n logn) time for n lines.

Exercise 8.4. How?

Moreover, we can view a line arrangement as a planar graph by adding an additional
vertex at “infinity”, that is incident to all rays which leave this bounding box. For
algorithmic purposes, we will mostly think of an arrangement as being represented by a
doubly connected edge list (DCEL), cf. Section 2.2.1.

Theorem 8.5. A simple arrangement A(L) of n lines in R2 has
(
n
2

)
vertices, n2 edges,

and
(
n
2

)
+ n+ 1 faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are(
n
2

)
vertices.
The number of edges we count using induction on n. For n = 1 we have 12 = 1 edge.

By adding one line to an arrangement of n − 1 lines we split n − 1 existing edges into
two and introduce n new edges along the newly inserted line. Thus, there are in total
(n− 1)2 + 2n− 1 = n2 − 2n+ 1+ 2n− 1 = n2 edges.

The number f of faces can now be obtained from Euler’s formula v− e+ f = 2, where
v and e denote the number of vertices and edges, respectively. However, in order to
apply Euler’s formula we need to consider A(L) as a planar graph and take the symbolic
“infinite” vertex into account. Therefore,

f = 2−

((
n

2

)
+ 1

)
+n2 = 1+

1

2
(2n2−n(n− 1)) = 1+

1

2
(n2+n) = 1+

(
n

2

)
+n .

The complexity of an arrangement is simply the total number of vertices, edges, and
faces (in general, cells of any dimension).

Exercise 8.6. Consider a set of lines in the plane with no three intersecting in a
common point. Form a graph G whose vertices are the intersection points of the
lines and such that two vertices are adjacent if and only if they appear consecutively
along one of the lines. Prove that χ(G) 6 3, where χ(G) denotes the chromatic
number of the graph G. In other words, show how to color the vertices of G using
at most three colors such that no two adjacent vertices have the same color.

122

Geometry: C&A 2019 8.2. Construction

8.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-
quadratic algorithm to construct it. We will simply construct it incrementally, inserting
the lines one by one. Let `1, . . . , `n be the order of insertion.

At Step i of the construction, locate `i in the leftmost cell of A({`1, . . . , `i−1}) it
intersects. (The halfedges leaving the infinite vertex are ordered by slope.) This takes
O(i) time. Then traverse the boundary of the face F found until the halfedge h is found
where `i leaves F (see Figure 8.2 for illustration). Insert a new vertex at this point,
splitting F and h and continue in the same way with the face on the other side of h.

`

Figure 8.2: Incremental construction: Insertion of a line `. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion of a new vertex involves splitting two halfedges and thus is a constant
time operation. But what is the time needed for the traversal? The complexity of
A({`1, . . . , `i−1}) is Θ(i2), but we will see that the region traversed by a single line has
linear complexity only.

8.3 Zone Theorem

For a line ` and an arrangement A(L), the zone ZA(L)(`) of ` in A(L) is the set of cells
from A(L) whose closure intersects `.

Theorem 8.7. Given an arrangement A(L) of n lines in R2 and a line ` (not necessarily
from L), the total number of edges in all cells of the zone ZA(L)(`) is at most 10n.

Proof. Without loss of generality suppose that ` is horizontal (rotate the plane accord-
ingly). For each cell of ZA(L)(`) split its boundary at its topmost vertex and at its
bottommost vertex and orient all edges from bottom to top, horizontal edges from left

123

Chapter 8. Line Arrangements Geometry: C&A 2019

to right. Those edges that have the cell to their right are called left-bounding for the cell
and those edges that have the cell to their left are called right-bounding. For instance,
for the cell depicted in Figure 8.3, all left-bounding edges are shown blue and bold.

Figure 8.3: Left-bounding edges (blue and bold) of a cell.

We will show that there are at most 5n left-bounding edges in ZA(L)(`) by induction
on n. By symmetry, the same bound holds also for the number of right-bounding edges
in ZA(L)(`).

For n = 1, there is at most one (exactly one, unless ` is parallel to and lies above the
only line in L) left-bounding edge in ZA(L)(`) and 1 6 5n = 5. Assume the statement is
true for n− 1.

`

r

`0

`1

Figure 8.4: At most three new left-bounding edges are created by adding r to A(L\{r}).

If no line from L intersects `, then all lines in L ∪ {`} are horizontal and there is at
most 1 < 5n left-bounding edge in ZA(L)(`). Else assume first that there is a single
rightmost line r from L intersecting ` and the arrangement A(L \ {r}). By the induction
hypothesis there are at most 5n − 5 left-bounding edges in ZA(L\{r})(`). Adding r back
adds at most three new left-bounding edges: At most two edges (call them `0 and `1) of
the rightmost cell of ZA(L\{r})(`) are intersected by r and thereby split in two. Both of
these two edges may be left-bounding and thereby increase the number of left-bounding
edges by at most two. In any case, r itself contributes exactly one more left-bounding
edge to that cell. The line r cannot contribute a left-bounding edge to any cell other
than the rightmost: to the left of r, the edges induced by r form right-bounding edges
only and to the right of r all other cells touched by r (if any) are shielded away from
` by one of `0 or `1. Therefore, the total number of left-bounding edges in ZA(L)(`) is
bounded from above by 3+ 5n− 5 < 5n.

124

Geometry: C&A 2019 8.4. The Power of Duality

If there are several rightmost lines that intersect ` in the same point, we consider these
lines in an arbitrary order. Using the same line of arguments as in the previous case,
it can be observed that we add at most five left-bounding edges when adding a line r ′

after having added a line r, where both r and r ′ pass through the rightmost intersection
point on `. Apart from r, the line r ′ intersects at most two left-bounding edges `0 and
`1 of cells in the zone of `. There are two new left-bounding segments on r ′, and at most
one additional on r. Hence, the number of left-bounding edges in this case is at most
5+ 5n− 5 = 5n.

Corollary 8.8. The arrangement of n lines in R2 can be constructed in optimal O(n2)
time and space.

Proof. Use the incremental construction described above. In Step i, for 1 6 i 6 n,
we do a linear search among i − 1 elements to find the starting face and then traverse
(part of) the zone of the line `i in the arrangement A({`1, . . . , `i−1}). By Theorem 8.7
the complexity of this zone and hence the time complexity of Step i altogether is O(i).
Overall we obtain

∑n
i=1 ci = O(n

2) time (and space), for some constant c > 0, which is
optimal by Theorem 8.5.

The corresponding bounds for hyperplane arrangements in Rd are Θ(nd) for the
complexity of a simple arrangement and O(nd−1) for the complexity of a zone of a
hyperplane.

Exercise 8.9. For an arrangement A of a set of n lines in R2, let

F :=
⋃

C is a bounded cell ofA

C

denote the union of the closure of all bounded cells. Show that the complexity
(number of vertices and edges of the arrangement lying on the boundary) of F is
O(n).

8.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projective
point ↔ line duality. It is often convenient to assume that no two points in the primal
have the same x-coordinate so that no line defined by any two points is vertical (and
hence becomes an infinite point in the dual). This degeneracy can be tested for by sorting
according to x-coordinate (in O(n logn) time) and resolved by rotating the whole plane
by some sufficiently small angle. In order to select the rotation angle it is enough to
determine the line of maximum absolute slope that passes through two points. Then we
can take, say, half of the angle between such a line and the vertical direction. As the
line of maximum slope through any given point can be found in linear time, the overall
maximum can be obtained in O(n2) time.

The following problems can be solved in O(n2) time and space by constructing the
dual arrangement.

125

Chapter 8. Line Arrangements Geometry: C&A 2019

General position test. Given n points in R2, are any three of them collinear? (Dual: do
any three lines of the dual arrangement meet in a single point?)

Minimum area triangle. Given a set P ⊂ R2 of n points, what is the minimum area triangle
spanned by any three (pairwise distinct) points of P? Let us make the problem easier
by fixing two distinct points p, q ∈ P and ask for a minimum area triangle pqr, where
r ∈ P \ {p, q}. With pq fixed, the area of pqr is determined by the distance between r
and the line pq. Thus, we want to find a point r ∈ P \ {p, q} of minimum distance to pq.
Equivalently, we want to find

a closest line ` parallel to pq so that ` passes through some point r ∈ P \ {p, q}. (?)

Consider the set P∗ = {p∗ : p ∈ P} of dual lines and their arrangement A. In A the
statement (?) translates to “a closest point `∗ with the same x-coordinate as the vertex
p∗ ∩ q∗ of A that lies on some line r∗ ∈ P∗.” See Figure 8.5 for illustration.

p q

r

s

t

`

(a) primal

p∗

s∗
t∗

q∗

r∗
`∗

(b) dual

Figure 8.5: Minimum area triangle spanned by two fixed points p, q.

In other words, for the vertex v = p∗ ∩ q∗ of A we want to know what is a first
line from P∗ that is hit by a vertical ray—upward or downward—emanating from v. Of
course, in the end we want this information not only for such a single vertex (which
provides the minimum area triangle for fixed p, q) but for all vertices of A, that is, for
all possible pairs of fixed vertices p, q ∈

(
P
2

)
. Luckily, all this information can easily be

maintained over the incremental construction of A. When inserting a line `, this new line
may become the first line hit by some vertical rays from vertices of the already computed
partial arrangement. However, only vertices in the zone of ` may be affected. This zone
is traversed, anyway, during the insertion of `. So, during the traversal we can also check
possibly update the information for vertices that lie vertically above or below a new edge
of the arrangement, with no extra cost asymptotically.

126

Geometry: C&A 2019 8.5. Rotation Systems—Sorting all Angular Sequences

In this way obtain O(n2) candidate triangles by constructing the arrangement of the
n dual lines in O(n2) time. The smallest among those candidates can be determined by a
straightforward minimum selection (comparing the area of the corresponding triangles).

Exercise 8.10. A set P of n points in the plane is said to be in ε-general position for
ε > 0 if no three points of the form

p+ (x1, y1), q+ (x2, y2), r+ (x3, y3)

are collinear, where p, q, r ∈ P and |xi|, |yi| < ε, for i ∈ {1, 2, 3}. In words: P remains
in general position under changing point coordinates by less than ε each.

Give an algorithm with runtime O(n2) for checking whether a given point set P
is in ε-general position.

8.5 Rotation Systems—Sorting all Angular Sequences

Recall the notion of a combinatorial embedding from Chapter 2. It is specified by
the circular order of edges along the boundary of each face or—equivalently, dually—
around each vertex. In a similar way we can also give a combinatorial description of the
geometry of a finite point set P ⊂ R2 using its rotation system. This is nothing else but a
combinatorial embedding of the complete geometric (straight line) graph on P, specified
by the circular order of edges around vertices.1

For a given set P of n points, it is trivial to construct the corresponding rotation
system in O(n2 logn) time, by sorting each of the n lists of neighbors independently.
The following theorem describes a more efficient, in fact optimal, algorithm.

Theorem 8.11. Consider a set P of n points in the plane. For a point q ∈ P let cP(q)
denote the circular sequence of points from S \ {q} ordered counterclockwise around
q (in order as they would be encountered by a ray sweeping around q). The rotation
system of P, consisting of all cP(q), for q ∈ P, collectively can be obtained in O(n2)
time.

Proof. Consider the projective dual P∗ of P. An angular sweep around a point q ∈ P
in the primal plane corresponds to a traversal of the line q∗ from left to right in the
dual plane. (A collection of lines through a single point q corresponds to a collection of
points on a single line q∗ and slope corresponds to x-coordinate.) Clearly, the sequence of
intersection points along all lines in P∗ can be obtained by constructing the arrangement
in O(n2) time. In the primal plane, any such sequence corresponds to an order of the
remaining points according to the slope of the connecting line; to construct the circular
sequence of points as they are encountered around q, we have to split the sequence
obtained from the dual into those points that are to the left of q and those that are to
the right of q; concatenating both yields the desired sequence.

1As these graphs are not planar for |P| > 5, we do not have the natural dual notion of faces as in the
case of planar graphs.

127

Chapter 8. Line Arrangements Geometry: C&A 2019

8.6 Segment Endpoint Visibility Graphs

A fundamental problem in motion planning is to find a short(est) path between two
given positions in some domain, subject to certain constraints. As an example, suppose
we are given two points p, q ∈ R2 and a set S ⊂ R2 of obstacles. What is the shortest
path between p and q that avoids S?

Observation 8.12. The shortest path (if it exists) between two points that does not
cross a finite set of finite polygonal obstacles is a polygonal path whose interior
vertices are obstacle vertices.

One of the simplest type of obstacle conceivable is a line segment. In general the
plane may be disconnected with respect to the obstacles, for instance, if they form a
closed curve. However, if we restrict the obstacles to pairwise disjoint line segments then
there is always a free path between any two given points. Apart from start and goal
position, by the above observation we may restrict our attention concerning shortest
paths to straight line edges connecting obstacle vertices, in this case, segment endpoints.

Definition 8.13. Consider a set S of n disjoint line segments in R2. The segment
endpoint visibility graph V(S) is a geometric straight line graph defined on the segment
endpoints. Two segment endpoints p and q are connected by an edge in V(S) if and
only if

� the line segment pq is in S or

� pq ∩ s ⊆ {p, q} for every segment s ∈ S.

Figure 8.6: A set of disjoint line segments and their endpoint visibility graph.

If all segments are on the convex hull, the visibility graph is complete. If they form
parallel chords of a convex polygon, the visibility graph consists of copies of K4, glued
together along opposite edges and the total number of edges is linear only.

These graphs also appear in the context of the following question: Given a set of
disjoint line segments, is it possible to connect them to form (the boundary of) a simple
polygon? It is easy to see that this is not possible in general: Just take three parallel
chords of a convex polygon (Figure 8.7a). However, if we do not insist that the segments

128

Geometry: C&A 2019 8.6. Segment Endpoint Visibility Graphs

appear on the boundary, but allow them to be diagonals or epigonals, then it is always
possible [11, 12]. In other words, the segment endpoint visibility graph of disjoint line
segments is Hamiltonian, unless all segments are collinear. It is actually essential to
allow epigonals and not only diagonals [9, 20] (Figure 8.7b).

(a) (b)

Figure 8.7: Sets of disjoint line segments that do not allow certain polygons.

Constructing V(S) for a given set S of disjoint segments in a brute force way takes
O(n3) time. (Take all pairs of endpoints and check all other segments for obstruction.)

Theorem 8.14 (Welzl [21]). The segment endpoint visibility graph of n disjoint line
segments can be constructed in worst case optimal O(n2) time.

Proof. As before we assume general position, that is, no three endpoints are collinear
and no two have the same x-coordinate. It is no problem to handle such degeneracies
explicitly.

We have seen above how all sorted angular sequences can be obtained from the dual
line arrangement in O(n2) time. Topologically sweep the arrangement from left to right
(corresponds to changing the slope of the primal rays from −∞ to +∞) while maintaining
for each segment endpoint p the segment s(p) it currently “sees” (if any). Initialize by
brute force in O(n2) time (direction vertically downwards). Each intersection of two
lines corresponds to two segment endpoints “seeing” each other along the primal line
whose dual is the point of intersection. In order to process an intersection, we only need
that all preceding (located to the left) intersections of the two lines involved have already
been processed. This order corresponds to a topological sort of the arrangement graph
where all edges are directed from left to right. (Clearly, this graph is acyclic, that is, it
does not contain a directed cycle.) A topological sort can be obtained, for instance, via
(reversed) post order DFS in time linear in the size of the graph (number of vertices and
edges), which in our case here is O(n2).

When processing an intersection, there are four cases. Let p and q be the two points
involved such that p is to the left of q.

1. The two points belong to the same input segment→ output the edge pq, no change
otherwise.

2. q is obscured from p by s(p) → no change.

3. q is endpoint of s(p) → output pq and update s(p) to s(q).

129

Chapter 8. Line Arrangements Geometry: C&A 2019

4. Otherwise q is endpoint of a segment t that now obscures s(p) → output pq and
update s(p) to t.

Thus any intersection can be processed in constant time and the overall runtime of this
algorithm is quadratic.

8.7 3-Sum

The 3-Sum problem is the following: Given a set S of n integers, does there exist a
three-tuple2 of elements from S that sum up to zero? By testing all three-tuples this
can obviously be solved in O(n3) time. If the tuples to be tested are picked a bit more
cleverly, we obtain an O(n2) algorithm.

Let (s1, . . . , sn) be the sequence of elements from S in increasing order. This sequence
can be obtained by sorting in O(n logn) time. Then we test the tuples as follows.

For i = 1, . . . , n {
j = i, k = n.
While k > j {

If si + sj + sk = 0 then exit with triple si, sj, sk.
If si + sj + sk > 0 then k = k− 1 else j = j+ 1.

}
}

The runtime is clearly quadratic. Regarding the correctness observe that the following
is an invariant that holds at the start of every iteration of the inner loop: si+sx+sk < 0,
for all x ∈ {i, . . . , j− 1}, and si + sj + sx > 0, for all x ∈ {k+ 1, . . . , n}.

Interestingly, until very recently this was the best algorithm known for 3-Sum. But
at FOCS 2014, Grønlund and Pettie [8] presented a deterministic algorithm that solves
3-Sum in O(n2(log logn/ logn)2/3) time.

They also give a bound of O(n3/2
√
logn) on the decision tree complexity of 3-Sum,

which since then has been further improved in a series of papers. The latest improvement
is due to Kane, Lovett, and Moran [13] who showed that O(n log2 n) linear queries suffice
(where a query amounts to ask for the sign of the sum of at most six input numbers with
coefficients in {−1, 1}). In this decision tree model, only queries that involve the input
numbers are counted, all other computation, for instance, using these query results to
analyze the parameter space are for free. In other words, the results on the decision
tree complexity of 3-Sum demonstrate that the (supposed) hardness of 3-Sum does not
originate from the complexity of the decision tree.

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number 0 only. :-)

130

Geometry: C&A 2019 8.7. 3-Sum

The big open question remains whether an O(n2−ε) algorithm can be achieved.
Only in some very restricted models of computation—such as the 3-linear decision tree
model3—it is known that 3-Sum requires quadratic time [6].

3-Sum hardness There is a whole class of problems that are equivalent to 3-Sum up to
sub-quadratic time reductions [7]; such problems are referred to as 3-Sum-hard.

Definition 8.15. A problem P is 3-Sum-hard if and only if every instance of 3-Sum
of size n can be solved using a constant number of instances of P—each of O(n)
size—and o(n2−ε) additional time, for some ε > 0.

For instance, it is not hard to show that the following variation of 3-Sum—let us
denote it by 3-Sum◦—is 3-Sum-hard: Given a set S of n integers, does there exist a
three-element subset of S whose elements sum up to zero?

Exercise 8.16. Show that 3-Sum◦ is 3-Sum-hard.

As another example, consider the Problem GeomBase: Given n points on the three
horizontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that contains at
least three of them?

3-Sum can be reduced to GeomBase as follows. For an instance S = {s1, . . . , sn} of
3-Sum, create an instance P of GeomBase in which for each si there are three points in
P: (si, 0), (−si/2, 1), and (si, 2). If there are any three collinear points in P, there must
be one from each of the lines y = 0, y = 1, and y = 2. So suppose that p = (si, 0),
q = (−sj/2, 1), and r = (sk, 2) are collinear. The inverse slope of the line through p
and q is −sj/2−si

1−0
= −sj/2 − si and the inverse slope of the line through q and r is

sk+sj/2

2−1
= sk+sj/2. The three points are collinear if and only if the two slopes are equal,

that is, −sj/2− si = sk + sj/2 ⇐⇒ si + sj + sk = 0.
A very similar problem is General Position, in which one is given n arbitrary points

and has to decide whether any three are collinear. For an instance S of 3-Sum◦, create
an instance P of General Position by projecting the numbers si onto the curve y = x3,
that is, P = {(a, a3) |a ∈ S}.

Suppose three of the points, say, (a, a3), (b, b3), and (c, c3) are collinear. This is the
case if and only if the slopes of the lines through each pair of them are equal. (Observe
that a, b, and c are pairwise distinct.)

(b3 − a3)/(b− a) = (c3 − b3)/(c− b) ⇐⇒
b2 + a2 + ab = c2 + b2 + bc ⇐⇒

b = (c2 − a2)/(a− c) ⇐⇒
b = −(a+ c) ⇐⇒

a+ b+ c = 0 .

3where a decision depends on the sign of a linear expression in 3 input variables

131

Chapter 8. Line Arrangements Geometry: C&A 2019

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Splitting/Separation, we are given a set of n line segments and have to
decide whether there exists a line that does not intersect any of the segments but splits
them into two non-empty subsets. To show that this problem is 3-Sum-hard, we can
use essentially the same reduction as for GeomBase, where we interpret the points along
the three lines y = 0, y = 1, and y = 2 as sufficiently small “holes”. The parts of the
lines that remain after punching these holes form the input segments for the Splitting
problem. Horizontal splits can be prevented by putting constant size gadgets somewhere
beyond the last holes, see the figure below. The set of input segments for the segment

splitting problem requires sorting the points along each of the three horizontal lines,
which can be done in O(n logn) = o(n2) time. It remains to specify what “sufficiently
small” means for the size of those holes. As all input numbers are integers, it is not hard
to show that punching a hole of (x − 1/4, x + 1/4) around each input point x is small
enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two
segments s1, s2 ∈ S. The question is: Are there two points, p1 ∈ s1 and p2 ∈ s2 which
can see each other, that is, the open line segment p1p2 does not intersect any segment
from S? The reduction from 3-Sum is the same as for Segment Splitting, just put s1
above and s2 below the segments along the three lines.

In Motion Planning, we are given a robot (line segment), some environment (modeled
as a set of disjoint line segments), and a source and a target position. The question is:
Can the robot move (by translation and rotation) from the source to the target position,
without ever intersecting the “walls” of the environment?

To show that Motion Planning is 3-Sum-hard, employ the reduction for Segment
Splitting from above. The three “punched” lines form the doorway between two rooms,
each modeled by a constant number of segments that cannot be split, similar to the
boundary gadgets above. The source position is in one room, the target position in the
other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is sufficiently small compared to the
length of the robot).

Exercise 8.17. The 3-Sum’ problem is defined as follows: given three sets S1, S2, S3 of
n integers each, are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0?
Prove that the 3-Sum’ problem and the 3-Sum problem as defined in the lecture
(S1 = S2 = S3) are equivalent, more precisely, that they are reducible to each other
in subquadratic time.

132

Geometry: C&A 2019 8.8. Ham Sandwich Theorem

8.8 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two finite sets R and D of points, construct a line that bisects both sets, that is, in either
halfplane defined by the line there are about half of the points from R and about half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

Definition 8.18. Consider an arrangement A(L) induced by a set L of n non-vertical
lines in the plane. We say that a point p is on the k-level in A(L) if there are at
most k− 1 lines below and at most n− k lines above p. The 1-level and the n-level
are also referred to as lower and upper envelope, respectively.

Figure 8.8: The 3-level of an arrangement.

Another way to look at the k-level is to consider the lines to be real functions; then
the lower envelope is the pointwise minimum of those functions, and the k-level is defined
by taking pointwise the kth-smallest function value.

Theorem 8.19. Let R,D ⊂ R2 be finite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane defined by ` there are no
more than |R|/2 points from R and no more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R ∪ D have the same
x-coordinate. (Otherwise, rotate the plane infinitesimally.)

Let R∗ and D∗ denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R∗). The median level of A(R∗) defines the bisecting lines

133

Chapter 8. Line Arrangements Geometry: C&A 2019

for R. As |R| = |R∗| is odd, both the leftmost and the rightmost segment of this level
are defined by the same line `r from R∗, the one with median slope. Similarly there is a
corresponding line `d in A(D∗).

Since no two points from R∪D have the same x-coordinate, no two lines from R∗∪D∗
have the same slope, and thus `r and `d intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R∗) and the median level of A(D∗) intersect
(see Figure 8.9 for an example). Any point that lies on both median levels corresponds
to a primal line that bisects both point sets simultaneously.

Figure 8.9: An arrangement of 3 green lines (solid) and 3 blue lines (dashed) and
their median levels (marked bold on the right hand side).

How can the thieves use Theorem 8.19? If they are smart, they drape the necklace
along some convex curve, say, a circle. Then by Theorem 8.19 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, the necklace is cut at most twice.

However, knowing about the existence of such a line certainly is not good enough. It
is easy to turn the proof given above into an O(n2) algorithm to construct a line that
simultaneously bisects both sets. But we can do better. . .

8.9 Constructing Ham Sandwich Cuts in the Plane

The algorithm outlined below is not only interesting in itself but also because it illustrates
one of the fundamental general paradigms for designing optimization algorithms: prune
& search. The basic idea behind prune & search is to search the space of possible
solutions by at each step excluding some part of this space from further consideration.
For instance, if at each step a constant fraction of all possible solutions can be discarded
and a single step is linear in the number of solutions to be considered, then for the
runtime we obtain a recursion of the form

T(n) 6 cn+ T

(
n

(
1−

1

d

))
< cn

∞∑
i=0

(
d− 1

d

)i
= cn

1

1− d−1
d

= cdn ,

134

Geometry: C&A 2019 8.9. Constructing Ham Sandwich Cuts in the Plane

that is, a linear time algorithm overall. Another well-known example of prune & search
is binary search: every step takes constant time and about half of the possible solutions
can be discarded, resulting in a logarithmic runtime overall.

Theorem 8.20 (Edelsbrunner and Waupotitsch [5]). Let R,D ⊂ R2 be finite sets of points
with n = |R|+ |D|. Then in O(n logn) time one can find a line ` that simultaneously
bisects R and D. That is, in either open halfplane defined by ` there are no more
than |R|/2 points from R and no more than |D|/2 points from D.

Proof. We describe a recursive algorithm find(L1, k1, L2, k2, (x1, x2)), for sets L1, L2 of
lines in R2, non-negative integers k1 and k2, and a real interval (x1, x2), to find an
intersection between the k1-level of A(L1) and the k2-level of A(L2), under the following
assumption that is called odd-intersection property : the k1-level of A(L1) and the k2-
level of A(L2) intersect an odd number of times in (x1, x2) and they do not intersect at
x ∈ {x1, x2}. Note that the odd-intersection property is equivalent to saying that the
level that is above the other at x = x1 is below the other at x = x2. In the end, we are
interested in find(R∗, (|R| + 1)/2,D∗, (|D| + 1)/2, (−∞,∞)). As argued in the proof of
Theorem 8.19, for these arguments the odd-intersection property holds.

First let L = L1 ∪ L2 and find a line µ with median slope in L. Denote by L< and
L> the lines from L with slope less than and greater than µ, respectively. Using an
infinitesimal rotation of the plane if necessary, we may assume without loss of generality
that no two points in R∪D have the same x-coordinate and thus no two lines in L have the
same slope. Pair the lines in L< with those in L> arbitrarily to obtain an almost perfect
matching in the complete bipartite graph on L< ∪ L>. Denote by I the b(|L<|+ |L>|)/2c
points of intersection generated by the pairs chosen, and let j be a point from I with
median x-coordinate.

Determine the intersection (j, y1) of the k1-level of L1 with the vertical line x = j

and the intersection (j, y2) of the k2-level of L2 with the vertical line x = j. If both
levels intersect at x = j, return the intersection and exit. Otherwise, if j ∈ (x1, x2),
then exactly one of the intervals (x1, j) or (j, x2) has the odd-intersection property, say4,
(x1, j). In other words, we can from now on restrict our focus to the halfplane x 6 j. The
case j /∈ (x1, x2) is no different, except that we simply keep the original interval (x1, x2).

In the following it is our goal to discard a constant fraction of the lines in L from
further consideration. To this end, let I> denote the set of points from I with x-coordinate
greater than j, and let µ ′ be a line parallel to µ such that about half of the points from
I> are above µ ′ (and thus the other about half of points from I> are below µ ′). We
consider the four quadrants formed by the two lines x = j and µ ′. By assumption the
odd-intersection property (for the k1-level of L1 and the k2-level of L2) holds for the
(union of the) left two quadrants. Therefore the odd-intersection property holds for
exactly one of the left two quadrants; we call this the interesting quadrant. Suppose
furthermore that the upper left quadrant Q2 is interesting. We will later argue how to
algorithmically determine the interesting quadrant (see Figure 8.10 for an example).

4The other case is completely symmetric and thus will not be discussed here.

135

Chapter 8. Line Arrangements Geometry: C&A 2019

µ

L<

L>

I

x = j

µ ′

` ′

Q2

Q4

Figure 8.10: An example with a set L1 of 4 red lines and a set L2 of 3 blue lines.
Suppose that k1 = 3 and k2 = 2. Then the interesting quadrant is the
top-left one (shaded) and the red line ` ′ (the line with a smallest slope
in L1) would be discarded because it does not intersect the interesting
quadrant.

Then by definition of j and µ ′ about a quarter of the points from I are contained
in the opposite, that is, the lower right quadrant Q4. Any point in Q4 is the point of
intersection of two lines from L, exactly one of which has slope larger than µ ′. As no line
with slope larger than µ ′ that passes through Q4 can intersect Q2, any such line can be
discarded from further consideration. In this case, the lines discarded pass completely
below the interesting quadrant Q2. For every line discarded in this way from L1 or L2,
the parameter k1 or k2, respectively, has to be decreased by one. In the symmetric case
where the lines discarded pass above the interesting quadrant, the parameters k1 and k2
stay the same. In any case, about a 1/8-fraction of all lines in L is discarded. Denote
the resulting sets of lines (after discarding) by L ′1 and L ′2, and let k ′1 and k ′2 denote the
correspondingly adjusted levels.

We want to apply the algorithm recursively to compute an intersection between the
k ′1-level of L

′
1 and the k ′2-level of L

′
2. However, discarding lines changes the arrangement

and its levels. As a result, it is not clear that the odd-intersection property holds for
the k ′1-level of L

′
1 and the k ′2-level of L

′
2 on the interval (x1, j), or even on the original

interval (x1, x2). Note that we do know that these levels intersect in the interesting
quadrant, and this intersection persists because none of the involved lines is removed.
However, it is conceivable that the removal of lines changes the parity of intersections
in the non-interesting quadrant of the interval under consideration. Luckily, this issue
can easily be resolved as a part of the algorithm to determine the interesting quadrant,
which we will discuss next. More specifically, we will show how to determine a subinterval
(x ′1, x

′
2) ⊆ (x1, x2) on which the odd-intersection property holds for the k ′1-level of L

′
1

136

Geometry: C&A 2019 8.9. Constructing Ham Sandwich Cuts in the Plane

and the k ′2-level of L
′
2.

So let us argue how to determine the interesting quadrant, that is, how to test whether
the k1-level of L1 and the k2-level of L2 intersect an odd number of times in S(x1,j)∩H+

µ ,
where S(x1,j) is the vertical strip (x1, j)×R and H+

µ is the open halfplane above µ ′. For
this it is enough to trace µ ′ through the arrangement A(L) while keeping track of the
position of the two levels of interest. Initially, at x = x1 we know which level is above
the other. At every intersection of one of the two levels with µ ′, we can check whether
the ordering is still consistent with that initial ordering. For instance, if both were above
µ ′ initially and the level that was above the other intersects µ ′ first, we can deduce that
there must be an intersection of the two levels above µ ′. As the relative position of the
two levels is reversed at x = x2, at some point an inconsistency, that is, the presence of
an intersection will be detected and we will be able to tell whether it is above or below
µ ′. (There could be many more intersections between the two levels, but finding just one
intersection is good enough.) Along with this above/below information we also obtain a
suitable interval (x ′1, x

′
2) for which the odd-intersection property holds because the levels

of interest do not change in that interval.
The trace of µ ′ in A(L) can be computed by a sweep along µ ′, which amounts to

computing all intersections of µ ′ with the lines from L and sorting them by x-coordinate.
During the sweep we keep track of the number of lines from L1 below µ ′ and the number of
lines from L2 below µ ′. At every point of intersection, these counters can be adjusted and
any intersection with one of the two levels of interest is detected. Therefore computing
the trace takes O(|L| log |L|) time. This step dominates the whole algorithm, noting that
all other operations are based on rank-i element selection, which can be done in linear
time [4]. Altogether, we obtain as a recursion for the runtime

T(n) 6 cn logn+ T(7n/8) = O(n logn).

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name “ham sandwich cut” comes
from. The theorem generalizes both to higher dimension and to more general types of
measures (here we study the discrete setting only where we simply count points). These
generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from Sd to Rd must map some pair of antipodal points to the same
point. For a proof of both theorems and many applications see Matoušek’s book [17].

Theorem 8.21. Let P1, . . . , Pd ⊂ Rd be finite sets of points. Then there exists a hy-
perplane H that simultaneously bisects all of P1, . . . , Pd. That is, in either open
halfspace defined by H there are no more than |Pi|/2 points from Pi, for every
i ∈ {1, . . . , d}.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

In the plane, a ham sandwich cut can be found in linear time using a sophisticated
prune and search algorithm by Lo, Matoušek and Steiger [16]. But in higher dimension,

137

Chapter 8. Line Arrangements Geometry: C&A 2019

the algorithmic problem gets harder. In fact, already for R3 the complexity of finding a
ham sandwich cut is wide open: The best algorithm known, from the same paper by Lo
et al. [16], has runtime O(n3/2 log2 n/ log∗ n) and no non-trivial lower bound is known.
If the dimension d is not fixed, it is both NP-hard and W[1]-hard5 in d to decide the
following question [15]: Given d ∈ N, finite point sets P1, . . . , Pd ⊂ Rd, and a point
p ∈ ⋃di=1 Pi, is there a ham sandwich cut through p?

Exercise 8.22. The goal of this exercise is to develop a data structure for halfspace
range counting.

a) Given a set P ⊂ R2 of n points in general position, show that it is possible
to partition this set by two lines such that each region contains at most dn

4
e

points.

b) Design a data structure of size O(n) that can be constructed in time O(n logn)
and allows you, for any halfspace h, to output the number of points |P ∩ h| of
P contained in this halfspace h in time O(nα), for some 0 < α < 1.

Exercise 8.23. Prove or disprove the following statement: Given three finite sets
A,B,C of points in the plane, there is always a circle or a line that bisects A,
B and C simultaneously (that is, no more than half of the points of each set are
inside or outside the circle or on either side of the line, respectively).

8.10 Davenport-Schinzel Sequences

The complexity of a simple arrangement of n lines in R2 is Θ(n2) and so every algorithm
that uses such an arrangement explicitly needs Ω(n2) time. However, there are many
scenarios in which we do not need the whole arrangement but only some part of it. For
instance, to construct a ham sandwich cut for two sets of points in R2 one needs the
median levels of the two corresponding line arrangements only. As mentioned in the
previous section, the relevant information about these levels can actually be obtained in
linear time. Similarly, in a motion planning problem where the lines are considered as
obstacles we are only interested in the cell of the arrangement we are located in. There
is no way to ever reach any other cell, anyway.

This chapter is concerned with analyzing the complexity—that is, the number of
vertices and edges—of a single cell in an arrangement of n curves in R2. In case of a
line arrangement this is mildly interesting only: Every cell is convex and any line can
appear at most once along the cell boundary. On the other hand, it is easy to construct
an example in which there is a cell C such that every line appears on the boundary ∂C.

But when we consider arrangement of line segments rather than lines, the situation
changes in a surprising way. Certainly a single segment can appear several times along
the boundary of a cell, see the example in Figure 8.11. Make a guess: What is the
maximal complexity of a cell in an arrangement of n line segments in R2?

5Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.

138

Geometry: C&A 2019 8.10. Davenport-Schinzel Sequences

Figure 8.11: A single cell in an arrangement of line segments.

You will find out the correct answer soon, although we will not prove it here. But
my guess would be that it is rather unlikely that your guess is correct, unless, of course,
you knew the answer already. :-)

For a start we will focus on one particular cell of any arrangement that is very easy to
describe: the lower envelope or, intuitively, everything that can be seen vertically from
below. To analyze the complexity of lower envelopes we use a combinatorial descrip-
tion using strings with forbidden subsequences, so-called Davenport-Schinzel sequences.
These sequences are of independent interest, as they appear in a number of combinatorial
problems [2] and in the analysis of data structures [19]. The techniques used apply not
only to lower envelopes but also to arbitrary cells of arrangements.

Definition 8.24. An (n, s)-Davenport-Schinzel sequence, for n, s ∈ N, is a sequence over
an alphabet A of size n in which

� no two consecutive characters are the same and

� there is no alternating subsequence of the form . . . a . . . b . . . a . . . b . . . of s + 2
characters, for any a, b ∈ A.

Let λs(n) be the length of a longest (n, s)-Davenport-Schinzel sequence.

For example, abcbacb is a (3, 4)-DS sequence but not a (3, 3)-DS sequence because
it contains the subsequence bcbcb.

Proposition 8.25. λs(m) + λs(n) 6 λs(m+ n).

Proof. On the left hand side, we consider two Davenport-Schinzel sequences, one over
an alphabet A of size m and another over an alphabet B of size n. We may suppose that
A ∩ B = ∅ (for each character x ∈ A ∩ B introduce a new character x ′ and replace all
occurrences of x in the second sequence by x ′). Concatenating both sequences yields a
Davenport-Schinzel sequence over the alphabet A ∪ B of size m+ n.

Let us now see how Davenport-Schinzel sequences are connected to lower envelopes.
Consider a collection F = {f1, . . . , fn} of real-valued continuous functions that are defined

139

Chapter 8. Line Arrangements Geometry: C&A 2019

on a common interval I ⊂ R. The lower envelope LF of F is defined as the pointwise
minimum of the functions fi, 1 6 i 6 n, over I. Suppose that any pair fi, fj, 1 6 i <

j 6 n, intersects in at most s points. Then I can be decomposed into a finite sequence
I1, . . . , I` of (maximal connected) pieces on each of which a single function from F defines
LF. Define the sequence φ(F) = (φ1, . . . , φ`), where fφi is the function from F which
defines LF on Ii.

Observation 8.26. φ(F) is an (n, s)-Davenport-Schinzel sequence.

In the case of line segments the above statement does not hold because a set of line
segments is in general not defined on a common real interval.

Proposition 8.27. Let F be a collection of n real-valued continuous functions, each of
which is defined on some real interval. If any two functions from F intersect in at
most s points then φ(F) is an (n, s+ 2)-Davenport-Schinzel sequence.

Proof. Let us first argue that we may suppose that the functions in F are piecewise
quadratic. Denote by P the set of points that are vertices of the arrangement induced by
the graphs of the functions in F. In other words, P is the set of all endpoints of functions
and intersection points of two functions from F. Let x1, . . . , xm denote the sequence of
x-coordinates of points from P, sorted in increasing order.

Consider the set Fi ⊆ F of functions that are defined on the interval [xi, xi+1], for
i ∈ {1, . . . ,m − 1}. By definition of P, no two functions intersect within the interval
(xi, xi+1), that is, throughout (xi, xi+1) the functions from Fi maintain the same total
(y-)order. We describe how to replace each function in Fi on [xi, xi+1] by a quadratic
function such that this order and therefore the combinatorics of the induced arrangement
remains unchanged.

Consider a function f ∈ Fi. If f is the only function in Fi that passes through both
points (xi, f(xi)) and (xi+1, f(xi+1)), then replace f by the line segment connecting these
two points. Otherwise, consider the set F of all functions in Fi that pass through both
points, and replace each function by a parabolic arc connecting the two points. These
parabolic arcs can be chosen so that they are pairwise disjoint within the open interval
(xi, xi+1) and all of them are infinitesimally close to the line segment between (xi, f(xi))
and (xi+1, f(xi+1)), while maintaining the total order among the functions in F within the
interval (xi, xi+1). The described replacement does not introduce any new intersection
(that is why we used different parabolic arcs) and maintains the order of functions at
any x-coordinate. In particular, φ(F) remains the same.

Now we are ready to prove the actual statement. The idea is to extend the func-
tions to be defined on all of R, without changing φ(F) too much, and then resort to
Observation 8.26.

Consider any function f ∈ F defined on an interval [a, b]. Extend f to R using almost
vertical rays pointing upward; from a use a ray of sufficiently small slope, from b use a
ray of sufficiently large slope. For all functions use the same slope on these two extensions
such that no extensions in the same direction intersect. By sufficiently small/large we

140

Geometry: C&A 2019 8.10. Davenport-Schinzel Sequences

mean that for any extension ray there is no endpoint of a function nor an intersection
point of two functions in the open angular wedge bounded by the extension ray and the
vertical ray starting from the same source. (There may be such points on the vertical
ray, but not in the open wedge between the two rays.) As any two functions intersect
only a finite number of times, there is only a finite number of endpoints and intersection
points to consider, and so “sufficiently small/large” is well-defined.

Denote the resulting collection of functions totally defined onR by F ′. If the extension
rays are sufficiently close to vertical then φ(F ′) = φ(F). (Recall that by our reasoning
from above we may regard each function as a parabolic arc or a line segment locally.)

For any f ∈ F ′ a single extension ray can create at most one additional intersection
with any g ∈ F ′. (Let [af, bf] and [ag, bg] be the intervals on which the function f and
g, respectively, was defined originally. Consider the ray r extending f from af to the left.
If af ∈ [ag, bg] then r may create a new intersection with g, if af > bg then r creates a
new intersection with the right extension of g from bg, and if af < ag then r does not
create any new intersection with g.)

On the other hand, for any pair s, t of segments, neither the left extension of the
leftmost segment endpoint nor the right extension of the rightmost segment endpoint
can introduce an additional intersection. Therefore, any pair of segments in F ′ intersects
at most s+ 2 times and the claim follows.

Next we will give an upper bound on the length of Davenport-Schinzel sequences for
small s.

Lemma 8.28. λ1(n) = n, λ2(n) = 2n− 1, and λ3(n) 6 2n(1+ logn).

Proof. λ1(n) = n is obvious. λ2(n) = 2n− 1 is given as an exercise. We prove λ3(n) 6
2n(1+ logn) = O(n logn).

For n = 1 it is λ3(1) = 1 6 2. For n > 1 consider any (n, 3)-DS sequence σ of length
λ3(n). Let a be a character that appears least frequently in σ. Clearly a appears at
most λ3(n)/n times in σ. Delete all appearances of a from σ to obtain a sequence σ ′ on
n−1 symbols. But σ ′ is not necessarily a DS sequence because there may be consecutive
appearances of a character b in σ ′, in case that σ = . . . bab

141

Chapter 8. Line Arrangements Geometry: C&A 2019

Claim: There are at most two pairs of consecutive appearances of the same char-
acter in σ ′. Indeed, such a pair can be created around the first and last appearance
of a in σ only. If any intermediate appearance of a creates a pair bb in σ ′ then
σ = . . . a . . . bab . . . a . . ., in contradiction to σ being an (n, 3)-DS sequence.

Therefore, one can remove at most two characters from σ ′ to obtain a (n − 1, 3)-DS
sequence σ̃. As the length of σ̃ is bounded by λ3(n− 1), we obtain λ3(n) 6 λ3(n− 1) +
λ3(n)/n+ 2. Reformulating yields

λ3(n)

n︸ ︷︷ ︸
=: f(n)

6
λ3(n− 1)

n− 1︸ ︷︷ ︸
=f(n−1)

+
2

n− 1
6 1︸︷︷︸

=f(1)

+2

n−1∑
i=1

1

i
= 1+ 2Hn−1

and together with 2Hn−1 < 1+ 2 logn we obtain λ3(n) 6 2n(1+ logn).

Bounds for higher-order Davenport-Schinzel sequences. As we have seen, λ1(n) (no aba)
and λ2(n) (no abab) are both linear in n. It turns out that for s > 3, λs(n) is slightly
superlinear in n (taking s fixed). The bounds are known almost exactly, and they involve
the inverse Ackermann function α(n), a function that grows extremely slowly.

To define the inverse Ackermann function, we first define a hierarchy of functions
α1(n), α2(n), α3(n), . . . where, for every fixed k, αk(n) grows much more slowly than
αk−1(n):

We first let α1(n) = dn/2e. Then, for each k > 2, we define αk(n) to be the number
of times we must apply αk−1, starting from n, until we get a result not larger than 1. In
other words, αk(n) is defined recursively by:

αk(n) =

{
0, if n 6 1;
1+ αk(αk−1(n)), otherwise.

Thus, α2(n) = dlog2 ne, and α3(n) = log∗ n.
Now fix n, and consider the sequence α1(n), α2(n), α3(n), For every fixed n, this

sequence decreases rapidly until it settles at 3. We define α(n) (the inverse Ackermann
function) as the function that, given n, returns the smallest k such that αk(n) is at most
3:

α(n) = min {k | αk(n) 6 3}.

We leave as an exercise to show that for every fixed k we have αk(n) = o(αk−1(n))
and α(n) = o(αk(n)).

Coming back to the bounds for Davenport-Schinzel sequences, for λ3(n) (no ababa)
it is known that λ3(n) = Θ(nα(n)) [10]. In fact it is known that λ3(n) = 2nα(n) ±
O(n

√
α(n)) [14, 18]. For λ4(n) (no ababab) we have λ4(n) = Θ(n · 2α(n)) [3].

For higher-order sequences the known upper and lower bounds are almost tight, and
they are of the form λs(n) = n · 2poly(α(n)), where the degree of the polynomial in the
exponent is roughly s/2 [3, 18].

142

Geometry: C&A 2019 8.11. Constructing lower envelopes

Realizing DS sequences as lower envelopes. There exists a construction of a set of n seg-
ments in the plane whose lower-envelope sequence has length Ω(nα(n)). (In fact, the
lower-envelope sequence has length nα(n) − O(n), with a leading coefficient of 1; it is
an open problem to get a leading coefficient of 2, or prove that this is not possible.)

It is an open problem to construct a set of n parabolic arcs in the plane whose
lower-envelope sequence has length Ω(n · 2α(n)).

Generalizations of DS sequences. Also generalizations of Davenport-Schinzel sequences
have been studied, for instance, where arbitrary subsequences (not necessarily an al-
ternating pattern) are forbidden. For a word σ and n ∈ N define Ex(σ, n) to be the
maximum length of a word over A = {1, . . . , n}∗ that does not contain a subsequence of
the form σ. For example, Ex(ababa, n) = λ3(n). If σ consists of two letters only, say a
and b, then Ex(σ, n) is super-linear if and only if σ contains ababa as a subsequence [1].
This highlights that the alternating forbidden pattern is of particular interest.

Exercise 8.29. Prove that λ2(n) = 2n− 1.

Exercise 8.30. Prove that λs(n) is finite for all s and n.

8.11 Constructing lower envelopes

Theorem 8.31. Let F = {f1, . . . , fn} be a collection of real-valued continuous functions
defined on a common interval I ⊂ R such that no two functions from F intersect in
more than s points. Then the lower envelope LF can be constructed in O(λs(n) logn)
time. (Assuming that an intersection between any two functions can be constructed
in constant time.)

Proof. Divide and conquer. For simplicity, assume that n is a power of two. Split F

into two equal parts F1 and F2 and construct LF1 and LF2 recursively. The resulting
envelopes can be merged using line sweep by processing 2λs(n/2)+λs(n) 6 2λs(n) events
(the inequality 2λs(n/2) 6 λs(n) is by Proposition 8.25). Here the first term accounts
for events generated by the vertices of the two envelopes to be merged. The second
term accounts for their intersections, each of which generates a vertex of the resulting
envelope. Observe that no sorting is required and the sweep line status structure is of
constant size. Therefore, the sweep can be done in time linear in the number of events.

This yields the following recursion for the runtime T(n) of the algorithm. T(n) 6
2T(n/2) + cλs(n), for some constant c ∈ N. Using Proposition 8.25 it follows that
T(n) 6 c

∑logn
i=1 2

iλs(n/2
i) 6 c

∑logn
i=1 λs(n) = O(λs(n) logn).

Exercise 8.32. Show that every (n, s)-Davenport-Schinzel sequence can be realized as
the lower envelope of n continuous functions from R to R, every pair of which
intersect at most s times.

Exercise 8.33. Show that every Davenport-Schinzel sequence of order two can be re-
alized as a lower envelope of n parabolas.

143

Chapter 8. Line Arrangements Geometry: C&A 2019

8.12 Complexity of a single face

Theorem 8.34. Let Γ = {γ1, . . . , γn} be a collection of Jordan arcs in R2 such that
each pair intersects in at most s points, for some s ∈ N. Then the combinatorial
complexity of any single face in the arrangement A(Γ) is O(λs+2(n)).

Proof. Consider a face f of A(Γ). In general, the boundary of f might consist of several
connected components. But as any single curve can appear in at most one component,
by Proposition 8.25 we may suppose that the boundary consists of one component only.

Replace each γi by two directed arcs γ+
i and γ−

i that together form a closed curve
that is infinitesimally close to γi. Denote by S the circular sequence of these oriented
curves, in their order along the (oriented) boundary ∂f of f.

Consistency Lemma. Let ξ be one of the oriented arcs γ+
i or γ−

i . The order of
portions of ξ that appear in S is consistent with their order along ξ. (That is, for each
ξ we can break up the circular sequence S into a linear sequence S(ξ) such that the
portions of ξ that correspond to appearances of ξ in S(ξ) appear in the same order along
ξ.)

ξ
ξ1

ξ2x1
x2

β

α

(a) f lies on the unbounded side of α ∪ β.

ξ
ξ1

ξ2x1
x2

β

α

(b) f lies on the bounded side of α ∪ β.

Figure 8.12: Cases in the Consistency Lemma.

Consider two portions ξ1 and ξ2 of ξ that appear consecutively in S (that is, there
is no other occurrence of ξ in between). Choose points x1 ∈ ξ1 and x2 ∈ ξ2 and connect
them in two ways: first by the arc α following ∂f as in S, and second by an arc β inside
the closed curve formed by γ+

i or γ−
i . The curves α and β do not intersect except at

their endpoints and they are both contained in the complement of the interior of f. In
other words, α ∪ β forms a closed Jordan curve and f lies either in the interior of this
curve or in its exterior. In either case, the part of ξ between ξ1 and ξ2 is separated
from f by α ∪ β and, therefore, no point from this part can appear anywhere along ∂f.
In other words, ξ1 and ξ2 are also consecutive boundary parts in the order of boundary
portions along ξ, which proves the lemma.

Break up S into a linear sequence S ′ = (s1, . . . , st) arbitrarily. For each oriented arc
ξ, consider the sequence s(ξ) of its portions along ∂f in the order in which they appear
along ξ. By the Consistency Lemma, s(ξ) corresponds to a subsequence of S, starting
at sk, for some 1 6 k 6 t. In order to consider s(ξ) as a subsequence of S ′, break up the

144

Geometry: C&A 2019 8.12. Complexity of a single face

symbol for ξ into two symbols ξ and ξ ′ and replace all occurrences of ξ in S ′ before sk
by ξ ′. Doing so for all oriented arcs results in a sequence S∗ on at most 4n symbols.

Claim: S∗ is a (4n, s+ 2)-Davenport-Schinzel sequence.
Clearly no two adjacent symbols in S∗ are the same. Suppose S∗ contains an alter-

nating subsequence σ = . . . ξ . . . η . . . ξ . . . η . . . of length s+4. For any occurrence of ξ in
this sequence, choose a point from the corresponding part of ∂f. This gives a sequence
x1, . . . , xd(s+4)/2e of points on ∂f. These points we can connect in this order by a Jordan
arc C(ξ) that stays within the closed curve formed by ξ and its counterpart—except for
the points x1, . . . , xd(s+4)/2e, which lie on this closed curve. Similarly we may choose
points y1, . . . , yb(s+4)/2c on ∂f that correspond to the occurrences of η in σ and con-
nect these points in this order by a Jordan arc C(η) that stays (except for the points
y1, . . . , yb(s+4)/2c) within the closed curve formed by η and its counterpart.

Now consider any four consecutive elements in σ and the corresponding points xi,
yi, xi+1, yi+1, which appear in this order—and, thus, can be regarded as connected by
an arc—along ∂f. In addition, the points xi and xi+1 are connected by an arc of C(ξ),
and similarly yi and yi+1 are connected by an arc of C(ξ). Both arcs, except for their
endpoints, lie in the exterior of f. Finally, we can place a point u into the interior of f
and connect u by pairwise interior-disjoint arcs to each of xi, yi, xi+1, and yi+1, such
that the relative interior of these four arcs stays in the interior of f. By construction,
no two of these arcs cross (intersect at a point that is not a common endpoint), except
possibly for the arcs xi, xi+1 and yi, yi+1 in the exterior of f. In fact, these two arcs
must intersect, because otherwise we are facing a plane embedding of K5, which does not
exist (Figure 8.13).

xi

xi+1

yi

yi+1

u
∂f

Figure 8.13: Every quadruple xi, yi, xi+1, yi+1 generates an intersection between the
curves ξ and η.

In other words, any quadruple of consecutive elements from the alternating subse-
quence induces an intersection between the corresponding arcs ξ and η. Clearly these
intersection points are pairwise distinct for any pair of distinct quadruples which alto-
gether provides s+ 4− 3 = s+ 1 points of intersection between ξ and η, in contradiction
to the assumption that these curves intersect in at most s points.

145

Chapter 8. Line Arrangements Geometry: C&A 2019

Corollary 8.35. The combinatorial complexity of a single face in an arrangement of n
line segments in R2 is O(λ3(n)) = O(nα(n)).

Exercise 8.36.
a) Show that for every fixed k > 2 we have αk(n) = o(αk−1(n)); in fact, for

every fixed k and j we have αk(n) = o(αk−1(αk−1(· · ·αk−1(n) · · ·))), with j

applications of αk−1.

b) Show that for every fixed k we have α(n) = o(αk(n)).

It is a direct consequence of the symmetry in the definition that the property of being
a Davenport-Schinzel sequence is invariant under permutations of the alphabet. For
instance, σ = bcacba is a (3, 3)-DS sequence over A = {a, b, c}. Hence the permutation
π = (ab) induces a (3, 3)-DS sequence π(σ) = acbcab and similarly π ′ = (cba) induces
another (3, 3)-DS sequence π ′(σ) = abcbac.

When counting the number of Davenport-Schinzel sequences of a certain type we
want to count essentially distinct sequences only. Therefore we call two sequences over
a common alphabet A equivalent if and only if one can be obtained from the other
by a permutation of A. Then two sequences are distinct if and only if they are not
equivalent. A typical way to select a representative from each equivalence class is to
order the alphabet and demand that the first appearance of a symbol in the sequence
follows that order. For example, ordering A = {a, b, c} alphabetically demands that the
first occurrence of a precedes the first occurrence of b, which in turn precedes the first
occurrence of c.

Exercise 8.37. Let P be a convex polygon with n+1 vertices. Find a bijection between
the triangulations of P and the set of pairwise distinct (n, 2)-Davenport-Schinzel
sequences of maximum length (2n − 1). It follows that the number of distinct
maximum (n, 2)-Davenport-Schinzel sequences is exactly Cn−1 = 1

n

(
2n−2
n−1

)
, which is

the (n− 1)-st Catalan number.

Questions

37. How can one construct an arrangement of lines in R2? Describe the incre-
mental algorithm and prove that its time complexity is quadratic in the number of
lines (incl. statement and proof of the Zone Theorem).

38. How can one test whether there are three collinear points in a set of n given
points in R2? Describe an O(n2) time algorithm.

39. How can one compute the minimum area triangle spanned by three out of n
given points in R2? Describe an O(n2) time algorithm.

40. What is a ham sandwich cut? Does it always exist? How to compute it? State
and prove the theorem about the existence of a ham sandwich cut in R2 and sketch
the O(n logn) algorithm by Edelsbrunner and Waupotitsch.

146

Geometry: C&A 2019 8.12. Complexity of a single face

41. What is the endpoint visibility graph for a set of disjoint line segments in the
plane and how can it be constructed? Give the definition and explain the relation
to shortest paths. Describe the O(n2) algorithm by Welzl, including full proofs of
Theorem 8.11 and Theorem 8.14.

42. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

43. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and briefly sketch the corresponding reductions.

44. What is an (n, s) Davenport-Schinzel sequence and how does it relate to the
lower envelope of real-valued continuous functions? Give the precise definition
and some examples. Explain the relationship to lower envelopes and how to apply
the machinery to partial functions like line segments.

45. What is the value of λ1(n) and λ2(n)?

46. What is the asymptotic value of λ3(n), λ4(n), and λs(n) for larger s?

47. What is the combinatorial complexity of the lower envelope of a set of n
lines/parabolas/line segments?

48. What is the combinatorial complexity of a single face in an arrangement of n
line segments? State the result and sketch the proof (Theorem 8.34).

References

[1] Radek Adamec, Martin Klazar, and Pavel Valtr, Generalized Davenport-Schinzel
sequences with linear upper bound. Discrete Math., 108, (1992), 219–229.

[2] Pankaj K. Agarwal and Micha Sharir, Davenport-Schinzel sequences and their
geometric applications, Cambridge University Press, New York, NY, 1995.

[3] Pankaj K. Agarwal, Micha Sharir, and Peter W. Shor, Sharp upper and lower bounds
on the length of general Davenport-Schinzel sequences. J. Combin. Theory Ser.
A, 52, 2, (1989), 228–274.

[4] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan, Time bounds for selection. J. Comput. Syst. Sci., 7, 4, (1973), 448–461.

[5] Herbert Edelsbrunner and Roman Waupotitsch, Computing a ham-sandwich cut in
two dimensions. J. Symbolic Comput., 2, (1986), 171–178.

[6] Jeff Erickson, Lower bounds for linear satisfiability problems. Chicago J. Theoret.
Comput. Sci., 1999, 8.

147

https://doi.org/10.1016/0012-365X(92)90677-8
https://doi.org/10.1016/0012-365X(92)90677-8
https://doi.org/10.1016/0097-3165(89)90032-0
https://doi.org/10.1016/0097-3165(89)90032-0
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0747-7171(86)80020-7
https://doi.org/10.1016/S0747-7171(86)80020-7
http://cjtcs.cs.uchicago.edu/articles/1999/8/contents.html

Chapter 8. Line Arrangements Geometry: C&A 2019

[7] Anka Gajentaan and Mark H. Overmars, On a class of O(n2) problems in compu-
tational geometry. Comput. Geom. Theory Appl., 5, (1995), 165–185.

[8] Allan Grønlund and Seth Pettie, Threesomes, degenerates, and love triangles. J.
ACM, 65, 4, (2018), 22:1–22:25.

[9] Branko Grünbaum, Hamiltonian polygons and polyhedra. Geombinatorics, 3, 3,
(1994), 83–89.

[10] Sergiu Hart and Micha Sharir, Nonlinearity of Davenport-Schinzel sequences and of
generalized path compression schemes. Combinatorica, 6, (1986), 151–177.

[11] Michael Hoffmann, On the existence of paths and cycles . Ph.D. thesis, ETH
Zürich, 2005.

[12] Michael Hoffmann and Csaba D. Tóth, Segment endpoint visibility graphs are
Hamiltonian. Comput. Geom. Theory Appl., 26, 1, (2003), 47–68.

[13] Daniel M. Kane, Shachar Lovett, and Shay Moran, Near-optimal linear decision
trees for k-SUM and related problems. J. ACM, 66, 3, (2019), 16:1–16:18.

[14] Martin Klazar, On the maximum lengths of Davenport-Schinzel sequences. In
R. Graham et al., ed., Contemporary Trends in Discrete Mathematics, vol. 49 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pp. 169–178, Amer. Math. Soc., Providence, RI, 1999.

[15] Christian Knauer, Hans Raj Tiwary, and Daniel Werner, On the computational
complexity of ham-sandwich cuts, Helly sets, and related problems. In Proc. 28th
Sympos. Theoret. Aspects Comput. Sci., vol. 9 of LIPIcs, pp. 649–660, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2011.

[16] Chi-Yuan Lo, Jiří Matoušek, and William L. Steiger, Algorithms for ham-sandwich
cuts. Discrete Comput. Geom., 11, (1994), 433–452.

[17] Jiří Matoušek, Using the Borsuk–Ulam theorem , Springer-Verlag, Berlin, 2003.

[18] Gabriel Nivasch, Improved bounds and new techniques for Davenport-Schinzel se-
quences and their generalizations. J. ACM, 57, 3, (2010), Article No. 17.

[19] Seth Pettie, Splay trees, Davenport-Schinzel sequences, and the deque conjecture.
In Proc. 19th ACM-SIAM Sympos. Discrete Algorithms, pp. 1115–1124, 2008.

[20] Masatsugu Urabe and Mamoru Watanabe, On a counterexample to a conjecture of
Mirzaian. Comput. Geom. Theory Appl., 2, 1, (1992), 51–53.

[21] Emo Welzl, Constructing the visibility graph for n line segments in O(n2) time.
Inform. Process. Lett., 20, (1985), 167–171.

148

https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1145/3185378
https://doi.org/10.1007/BF02579170
https://doi.org/10.1007/BF02579170
https://doi.org/10.3929/ethz-a-004945082
https://doi.org/10.1016/S0925-7721(02)00172-4
https://doi.org/10.1016/S0925-7721(02)00172-4
https://doi.org/10.1145/3285953
https://doi.org/10.1145/3285953
https://doi.org/10.4230/LIPIcs.STACS.2011.649
https://doi.org/10.4230/LIPIcs.STACS.2011.649
https://doi.org/10.1007/BF02574017
https://doi.org/10.1007/BF02574017
https://doi.org/10.1007/978-3-540-76649-0
https://doi.org/10.1145/1706591.1706597
https://doi.org/10.1145/1706591.1706597
http://doi.acm.org/10.1145/1347082.1347204
https://doi.org/10.1016/0925-7721(92)90020-S
https://doi.org/10.1016/0925-7721(92)90020-S
https://doi.org/10.1016/0020-0190(85)90044-4

Chapter 9

Counting

We take a tour through several questions in algorithmic and extremal counting of (ge-
ometrically defined) combinatorial objects, with emphasis on how they connect to each
other in their solutions. Among these problems are (i) counting the number of simplices
spanned by d+ 1 points in a finite set of n points in d-space that contain a given point
(simplicial depth), (ii) counting the number of facets of the convex hull of n points in
d-space, (iii) investigating the minimal number of crossings a drawing of the complete
graph with straight line edges in the plane must have, (iv) counting of crossing-free ge-
ometric graphs of several types on so-called wheel-sets (point sets in the plane with all
but one point extremal),

Notation.

0 := (0, 0, . . . , 0) is the origin in the considered ambient space.

N is the set of positive integers, N0 := N ∪ {0}.

conv(S) denotes the convex hull of a given set S in Rd.(
S
k

)
denotes the set of all k-element subsets of a given set S.

Sometimes it may be useful to remember

n−1∑
i=0

(
i

k− 1

)
=

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k− 1

)
.

Checkpoints are usually simple facts that are put there to check your understanding of
definitions or notions, to be answered perhaps in a minute or two (assuming you have
indeed absorbed the definition).

149

Chapter 9. Counting Geometry: C&A 2019

9.1 Introduction

Consider a set P ⊆ Rd and q ∈ Rd. A set A ∈
(
P
d+1

)
is called q-embracing simplex if

q ∈ conv(A).
The simplicial depth, sdq(P), of point q relative to P is the number of q-embracing

simplices, i.e.

sdq(P) :=
∣∣∣∣{A ∈ (P

d+ 1

) ∣∣∣∣ q ∈ conv(A)
}∣∣∣∣ .

This notion, among others, is a possible response to the search for a higher-dimensional
counterpart of the notion of a median in R1. Note here that when specialized to R1, a
median is a point of maximum simplicial depth. We will investigate here this notion,
asking questions like:

What is the maximum possible simplicial depth a point can have in any set of
n points in general position?

How efficiently can we compute the simplicial depth of a point?

A second question we want to address is that of the complexity of polytopes in general
dimension d.

How many facets can a polytope obtained as the convex hull of n points have,
how few?

Given n points, how efficiently can we compute the number of facets? Can we
do that asymptotically faster than enumerating these facets (which is a hard
enough problem per se)?

A small caveat, in case you are not familiar with this: We know that a 2-dimensional
polytope with n vertices has n facets (here edges), and a 3-dimensional polytope with
n vertices has at most 2n − 4 facets (if the vertices are in general position, it is exactly
this number). So the number of facets is linear in n. This last fact is not true in higher
dimension and we will see what the right bounds are.

We will see that these two types of questions about simplicial depth and number
of facets of a polytope are very closely related; in some sense, that we will make very
explicit, it is the same question.

On the side, we will also indicate how these connect to other problems as indicated
in the abstract.

9.2 Embracing k-Sets in the Plane

In this section we investigate simplicial depth in the plane, and generalize by considering
arbitrarily large sets with a given point in their convex hull. This will allow us to

150

Geometry: C&A 2019 9.2. Embracing k-Sets in the Plane

introduce some of the technicalities in this simpler (planar) context, and we will see
later that the extension to larger sets was unavoidable, even when we are interested in
simplicial depth only.

Consider a set P ⊆ R2, with 0 6∈ P and P
.∪ {0} in general position (no three on a line);

n := |P|. This setting will be implicitly assumed throughout the section. For k ∈ N0, we
define

ek = ek(P) :=

∣∣∣∣{A ∈ (Pk
) ∣∣∣∣ 0 ∈ conv(A)

}∣∣∣∣ .
We call A with 0 ∈ conv(A) an embracing k-set – if |A| = 3, we call A an embracing
triangle.

Checkpoint 9.1. e3 is the simplicial depth of 0 in P, i.e. e3 = sd0(P). e0 = e1 = e2 = 0,
en ∈ {0, 1}.

We start a general investigation of e = (e0, e1, . . . , en). Bounds and algorithms will
follow easily. For a preparatory step consider real vectors x0..n−3 = (x0, x1, . . . , xn−3),
y0..n−2 and z0..n−1 satisfying

ek =

n−3∑
i=0

(
i

k− 3

)
xi , for k > 3, (9.2)

ek =

n−2∑
i=0

(
i

k− 2

)
yi , for k > 2, and (9.3)

ek =

n−1∑
i=0

(
i

k− 1

)
zi , for k > 1. (9.4)

Observe that x0..n−3 exists and is uniquely determined by e3..n, since

en =
(
n−3
n−3

)
xn−3 ⇒ xn−3 = en

en−1 =
(
n−4
n−4

)
xn−4 +

(
n−3
n−4

)
xn−3 ⇒ xn−4 = en−1 − (n− 3) xn−3︸ ︷︷ ︸

en
...

Similarly, this works for y0..n−2 and z0..n−1. Thus we have

e3..n
determine←→
each other

x0..n−3, e2..n
determine←→
each other

y0..n−2, e1..n
determine←→
each other

z0..n−1 .

For now, it is by no means clear what that should help here. Note also that these
facts are true for any vector e, we have not used any of the properties of the specific
vector we are interested in. They simply describe one of many possible transformations
of a given vector.

151

Chapter 9. Counting Geometry: C&A 2019

9.2.1 Adding a Dimension

Another step that comes across unmotivated: Lift the point set P vertically to a set P ′

in space, arbitrarily, with the only condition that P ′ is in general position (no four on a
plane).1 We denote the map by

P 3 q = (x, y) 7→ q ′ = (x, y, z(q)) ∈ P ′ .

For an embracing triangle ∆ = {p, q, r} in the plane, let β∆ be the number of points
in P ′ below the plane containing ∆ ′ = {p ′, q ′, r ′}. (Just to avoid confusion: β∆ clearly
depends on the choice of the lifting P ′.) Let

hi = hi(P
′) := the number of embracing triangles ∆ with β∆ = i.

Checkpoint 9.5.
∑n−3
i=0 hi = e3.

Let us recall here that we are assuming general position for P
.∪ {0}.

Lemma 9.6. 0 ∈ conv(P) ⇐⇒ h0 = hn−3 = 1.

Proof. (⇐) That’s obvious, since h0 = 1 means that there is some embracing triangle,
and therefore 0 is in the convex hull of P.

(⇒) Note that 0 ∈ conv(P) iff the z-axis (i.e. the vertical line through 0) intersects
conv(P ′). There are exactly two facets (triangles because of general position) intersected
by the z-axis, the bottom one, ∆ ′0 has no point in P ′ below its supporting plane, hence,
β∆0 = 0; the top one, ∆ ′1 has no point in P ′ above and hence n − 3 points in P ′ below
(all but the three points defining the facet), hence, β∆1 = n−3. Since any triple ∆ ′ ⊆ P ′
with all points in P ′ on one side (above or below) must give rise to a facet, it cannot be
hit by the z-axis, unless ∆ ′ = ∆ ′0 or ∆ ′ = ∆ ′1.

Consider an embracing k-set A and its lifting A ′. As observed before, in R3 the
vertical line through 0 will intersect the boundary of conv(A ′) in two facets. Consider
the top facet – its vertices are liftings of some embracing triangle ∆ in the plane. We call
this ∆ the witness of (the embracing property of) A. For how many embracing k-sets
is ∆ the witness?

For ∆ to be witness of an embracing k-set B, we must have ∆ ⊆ B and the remaining
k− 3 points in B \∆ must be chosen so that B ′ \∆ ′ lies below the plane spanned by ∆ ′.
Hence ∆ is witness for exactly

(
β∆
k−3

)
embracing k-sets. It follows that

ek =
∑

∆ embracing

(
β∆

k− 3

)
=

n−3∑
i=0

(
i

k− 3

)
hi . (9.7)

1For example, choose the lifting map (x, y) 7→ (x, y, x2 + y2) . . . but stay flexible!

152

Geometry: C&A 2019 9.2. Embracing k-Sets in the Plane

That is, the hi’s are exactly the xi’s defined by equations (9.2). As observed before, we
thus have

e3..n
determine←→
each other

h0..n−3 := (h0, h1, . . . , hn−3)

and therefore the vector h0..n−3 is independent of the lifting we chose, i.e. hi = hi(P).

A few properties emerge. First note that h (consisting of nonnegative integers, each at
most

(
n
3

)
= O(n3), i.e. O(logn) bits) is a compact way of representing e (with numbers,

some may be exponential in n, with Ω(n) bits). Also, since it is easy to compute the
vector h in O(n4) time2, we can compute each entry of ek in O(n4) time.

Exercise 9.8. Show

h0 = 1 ⇔ 0 ∈ conv(P) ⇔ hi > 1 for 0 6 i 6 n− 3 .

Exercise 9.9. Assume 0 ∈ conv(P). (i) What is the minimal possible value of e3 in
terms of n := |P|? (Note that this gives a quantified version of Carathéodory’s
Theorem.) (ii) What is the minimal possible value of ek, 3 6 k 6 n?

Exercise 9.10. What does
∑n−3
i=0 2

ihi count?

Exercise 9.11. Show
∑n
k=3(−1)

kek = −1 provided 0 ∈ conv(P).
(Hint: Plug in

∑n−3
i=0

(
i
k−3

)
hi for ek in this sum and simplify.)

In a next step we show that the vector h is symmetric.

Lemma 9.12. hi = hn−3−i.

Proof. Define ĥi in the same way as hi, except that you count the points above (instead
of below) the plane through the lifting of an embracing triangle. First, note that ĥi =
hn−3−i. And clearly, (with the same witness argument as before)

ek =

n−3∑
i=0

(
i

k− 3

)
ĥi ,

and, therefore,

hi = ĥi = hn−3−i .

That is, vector h0..n−3 is determined by entries h0, h1, . . . , hb(n−3)/2c.

Exercise 9.13. Show (n− 3)e3 = 2e4.

Exercise 9.14. Show that if |P| = 6, then e3 determines e3..6. How?

Exercise 9.15. Show that if |P| is even then e3 is even.

2With some basics from computational geometry, in O(n3) time.

153

Chapter 9. Counting Geometry: C&A 2019

9.2.2 The Upper Bound

We have seen in one of the exercises how the relation between e and h can be useful
in proving lower bounds on the ek’s. We need two lemmas towards a proof of upper
bounds.

The first lemma states that removing a point in P cannot increase hj.

Lemma 9.16. For all q ∈ P, hj(P \ {q}) 6 hj(P).

Proof. Which changes happen to hj as we remove a point q in P?

- We lose embracing triangles ∆ with j points below (in the lifting), one of which is
q. And we lose embracing triangles ∆, where q is a defining point (i.e. q ∈ ∆).

- We keep embracing triangles ∆ with j points below, and q above.

- We gain embracing triangles ∆ with j+1 points below, with q one of those below.

Now move q ′ (in the lifting) vertically above all planes defined by three points in P ′\{q ′}.
This does not change the values hi (since, again, h is independent of the lifting), and
the case of “We gain” cannot occur. This gives the lemma.

Lemma 9.17.
∑
q∈P hj(P \ {q}) = (n− j− 3)hj(P) + (j+ 1)hj+1(P).

Proof. A contribution to
∑
q∈P hj(P \ {q}) can come only from triangles ∆ with β∆ = j

or β∆ = j+ 1 (relative to the complete set P and a chosen lifting P ′).

- If β∆ = j, ∆ ′ remains a triangle with j points below, if q is chosen as one of the
(n− 3− j) points above.

- If β∆ = j+ 1, ∆ ′ turns into a triangle with j points below, if q is chosen as one of
the (j+ 1) points below.

Hence the lemma.

Now we recall the previous Lemma 9.16 to bound the sum in Lemma 9.17:∑
q∈P

hj(P \ {q}) 6 n · hj(P) ,

and with this we can derive

(n− j− 3)hj(P) + (j+ 1)hj+1(P) 6 n · hj(P)
(j+ 1)hj+1(P) 6 (j+ 3)hj(P)

hj+1(P) 6
j+ 3

j+ 1
hj(P) .

This bound can be iterated until we reach h0:

hj+1(P) 6
j+3
j+1

hj(P) 6
j+3
j+1

j+2
j
hj−1(P) 6

j+ 3

j+ 1

j+ 2

j
· · · 3
1︸ ︷︷ ︸

=(j+32)

h0(P)︸ ︷︷ ︸
61

6

(
j+ 3

2

)
.

154

Geometry: C&A 2019 9.2. Embracing k-Sets in the Plane

Theorem 9.18. Let P be a set of n points in general position.
(i) For all j, 0 6 j 6 n− 3,

hj = hn−3−j and hj 6

(
j+ 2

2

)
and hence hj 6 min{

(
j+2
2

)
,
(
n−1−j
2

)
}.

(ii)

e3 6

{
2
(
n/2+1
3

)
= n(n2−4)

24
for n even, and

2
(
(n+1)/2

3

)
+
(
(n+1)/2

2

)
= n(n2−1)

24
for n odd.

Proof. (i) is just a summary of what we have derived so far.
For (ii) we simply plug these bounds into relation (9.7). Suppose first that n is even.

Then

(h0, h1, . . . , hn/2−2) = (hn−3, hn−2, . . . , hn/2−1)

and, therefore,

e3 =

n−3∑
i=0

hi = 2

n/2−2∑
i=0

hi 6 2
n/2−2∑
i=0

(
i+ 2

2

)
= 2

(
n/2+ 1

3

)
.

Second, if n is odd then

(h0, h1, . . . , h(n−3)/2) = (hn−3, hn−2, . . . , h(n−3)/2)

with h(n−3)/2 appearing in both sequences. Then

e3 =

n−3∑
i=0

hi = 2

(n−3)/2−1∑
i=0

hi + h(n−3)/2

6 2

(n−3)/2−1∑
i=0

(
i+ 2

2

)
+

(
(n+ 1)/2

2

)
= 2

(
(n+ 1)/2

3

)
+

(
(n+ 1)/2

2

)
.

There are sets where all these bounds are tight, simultaneously. We find it more
convenient to substantiate this claim after some further considerations.

Exercise 9.19. Show e3 6 1
4

(
n
3

)
+ O(n2). (That is, asymptotically, at most 1/4 of all

triangles embrace the origin.)

Exercise 9.20. Try to understand the independence of h of the actual lifting by ob-
serving what happens as you move a single point vertically.

While we have successfully obtained lower and upper bounds, we will next give a
better method for computing the ek’s.

155

Chapter 9. Counting Geometry: C&A 2019

9.2.3 Faster Counting—Another Vector

Call a directed edge 0q, q ∈ P, an i-edge, if i points in P lie to the left of the directed
line through 0q (directed from 0 to q). Let `i = `i(P) be the number of i-edges of P.

Checkpoint 9.21.
∑
i `i = n. What is the vector l = (`0, `1, . . . , `n−1) for the case

0 6∈ conv(P)?

For every nonempty set A ⊆ P with 0 6∈ conv(A), conv(A) has a left and a right
tangent from 0. Let q ∈ A be the touching point of the right tangent. For how many
k-element sets A ⊆ P with 0 6∈ conv(A) is this point q the right touching point?

Checkpoint 9.22. This is
(
i
k−1

)
if 0q is an i-edge.

Hence, we have for 1 6 k 6 n:

ek =

(
n

k

)
︸ ︷︷ ︸∑n−1
i=0 (i

k−1)

−

n−1∑
i=0

(
i

k− 1

)
`i =

n−1∑
i=0

(
i

k− 1

)
(1− `i) . (9.23)

We have a combinatorial interpretation of the zi’s in (9.4) and, therefore, numbers `i
satisfying (9.23) are unique.

Exercise 9.24. Show that `i = `n−1−i. (Hint: Wonder why we chose “left” and not
“right”.)

We can compute the vector l0..n−1 in O(n logn) time. For that we rotate a directed
line about 0, starting with the horizontal line, say. We always maintain the number of
points left of this line, and update this number whenever we sweep over a point q ∈ P.
This q may lie ahead of 0 or behind it; depending on this the number increases by 1
or decreases by 1, resp. In this way, with a rotation by 180 degrees, we can compute
the “number of points to the left” for every q ∈ P. We need O(n logn) time to sort
the events (encounters with points in P). We initialize the “number to the left” in O(n)
time in the beginning, and then update the number in O(1) at each event. This gives
O(n logn) altogether.

Theorem 9.25. In the plane, the simplicial depth sdq(P) can be computed in O(n logn)
time, provided P

.∪ {q} is in general position.

Clearly, all entries ek, 1 6 k 6 n, can be computed based on the vector l. However,
keep in mind that the binomial coefficients involved in the sum (9.23) must be determined
and that the numbers involved are large (up to n-bit numbers).

Showing that the upper bound in Theorem 9.18 is tight is now actually easy.

156

Geometry: C&A 2019 9.2. Embracing k-Sets in the Plane

If P is the set of vertices of a regular n-gon, n odd, centered at 0, then `(n−1)/2 = n
(and all other `i’s vanish). Therefore,

e3 =

(
n

3

)
−

(
(n− 1)/2

2

)
· n =

n(n2 − 1)

24
,

and the case of n odd is shown tight in Theorem 9.18.
For n even, consider the vertices of a regular n-gon centered at 0, and let P be a

slightly perturbed set of these vertices so that P ∪ {0} is in general position. Note that
all edges 0q, q ∈ P, must be (n/2 − 1)- or (n/2)-edges. Interestingly, because of the
symmetry of the `-vector, we immediately know that `n/2−1 = `n/2 = n/2 (with all other
`i’s vanishing), independent of our perturbation. Now

e3 =

(
n

3

)
−

((
n/2− 1

2

)
+

(
n/2

2

))
n

2
=
n(n2 − 4)

24
,

and Theorem 9.18 is proven tight also for n even.

A next step is to understand what the possible `-vectors for n points are, and in this
way characterize and eventually count all possibilities for l and thus for e.

9.2.4 Characterizing All Possibilities

We start with two observations about properties of l.

Exercise 9.26. Show that `b(n−1)/2c > 1. (There is always a halving edge.)

Exercise 9.27. Show that if `i > 1 for some i 6 b(n − 1)/2c, then `j > 1 for all j,
i 6 j 6 b(n− 1)/2c.

We summarize our knowledge about l.

Theorem 9.28. For n ∈ N, the vector l0..n−1 of an n-point set satisfies the following
conditions.

� All entries are nonnegative integers.

�

∑n−1
i=0 `i = n.

� `i = `n−1−i. (Symmetry)

� If `i > 1 for some i 6 b(n − 1)/2c, then `j > 1 for all j, i 6 j 6 b(n − 1)/2c.
(remains positive towards the middle)

157

Chapter 9. Counting Geometry: C&A 2019

Let us call a vector of length n a legal n-vector if the conditions of Theorem 9.28
are satisfied. Then (1) is the only legal 1-vector, (1, 1) is the only legal 2-vector, and
the only legal 3-vectors are (0, 3, 0) and (1, 1, 1). The following scheme displays how we
derive legal 6-vectors from legal 5-vectors, and how we can derive legal 7-vectors from
legal 5- or 6-vectors.

n=5︷ ︸︸ ︷
0 0 5 0 0

0 1 3 1 0

0 2 1 2 0

1 1 1 1 1

add 1 in the middle and split−→

n=6︷ ︸︸ ︷
0 0 3 3 0 0

0 1 2 2 1 0

0 2 1 1 2 0

1 1 1 1 1 1

add 2 in the middle
↓

insert a 1 in the middle
↓

0 0 0 7 0 0 0

0 0 1 5 1 0 0

0 0 2 3 2 0 0

0 1 1 3 1 1 0︸ ︷︷ ︸
n=7, with >1 in the middle

0 0 3 1 3 0 0

0 1 2 1 2 1 0

0 2 1 1 1 2 0

1 1 1 1 1 1 1︸ ︷︷ ︸
n=7, with =1 in the middle

Exercise 9.29. Show that the scheme described, when applied to general n odd, is
complete. That is, starting with all legal n-vectors, n odd, we get all legal (n+ 1)-
vectors, and from the n- and (n+ 1)-vectors, we get all (n+ 2)-vectors.

Exercise 9.30. Show that the number of legal n-vectors is exactly 2b(n−1)/2c.

Exercise 9.31. Show that every legal n-vector is the `-vector of some set of n points
in general position.

With these exercises settled, we have given a complete characterization of all possible
`-vectors, thus of all possible e-vectors.

Theorem 9.32. The number of different e-vectors (or `-vectors) for n points is exactly
2b(n−1)/2c.

Exercise 9.33. Show that
∑j
i=0 `i 6 j+ 1 for all 0 6 j 6 b(n− 1)/2c. (Hint: Otherwise,

we get into conflict with “remains positive towards the middle”).

158

Geometry: C&A 2019 9.2. Embracing k-Sets in the Plane

9.2.5 Some Add-Ons

We are still missing an interpretation of the yi’s in relations (9.3). We want to leave this
as an exercise.

Exercise 9.34. For a set P of n points in general position, consider the vector

(b0, b1, . . . , bn−2)

defined by the relations

ek =

(
n

k

)
−

n−2∑
i=0

(
i

k− 2

)
bi =

n−2∑
i=0

(
i

k− 2

)
(n− i− 1− bi) ,

for 2 6 k 6 n. Give a combinatorial interpretation of these numbers bi, 0 6 i 6
n− 2.

Finally, let us investigate how the vectors x, y, and z from relations (9.2), (9.3), and
(9.4) connect to each other. Clearly, e1 and e2 given, they determine each other. But
how? This will allow us to relate the vectors h and l.

Exercise 9.35. Consider the relations defined in the beginning of this section on
x0..n−3, y0..n−2, z0..n−1, and e1..n (using e1 = e2 = 0). Then the yi’s are the forward
differences of the xi, and the zi’s are the forward differences of the yi’s. Prove this.
More concretely, show that

yi =


−x0 i = 0
xi−1 − xi 1 6 i 6 n− 3
xn−3 i = n− 2

or, equivalently,

yi = xi−1 − xi for all 0 6 i 6 n− 2, with x−1 := xn−2 := 0.

Show that this entails as well

xi = −

i∑
j=0

yj , for 0 6 i 6 n− 3.

Exercise 9.36. Prove for vectors a0..m and b0..m

∀k, 0 6 k 6 m : ak =

m∑
i=0

(
i

k

)
bi

⇐⇒ ∀i, 0 6 i 6 m : bi =

m∑
k=0

(−1)i+k
(
k

i

)
ak .

159

Chapter 9. Counting Geometry: C&A 2019

Exercise 9.37. Employing the previous exercise, what does h0 = 1 say about e3..n.

The following facts can now be readily derived.

Theorem 9.38.

hi =

(
i+ 2

2

)
−

i∑
j=0

(i+ 1− j)`j

Exercise 9.39. Prove Theorem 9.38.

Note that this implies the upper bounds we proved for the hi’s in Theorem 9.18,
since

∑i
j=0(i + 1 − j)`j is always nonnegative. Moreover, a combinatorial interpretation

of the slack becomes evident.

Theorem 9.40.

ek =

n∑
i=0

(
i

k

)
(`i − `i−1) with `−1 = `n = 1

Exercise 9.41. Prove Theorem 9.40.

Let us point out other counting problems which can be solved efficiently with the
insights developed.

Exercise 9.42. Given a ray r (emanating from point q) and n points P in the plane,
design an efficient algorithm that counts the number of points connecting segments
intersecting r. You may assume that P ∪ {q} is in general position and that r is
disjoint from P.

Exercise 9.43. Let w be a line minus an interval on it (an infinite wall with a window).
Given n points P in the plane, design an efficient algorithm that counts the number
of point connecting segments disjoint from w (i.e. the number of pairs of points
that see each other, either because they are both on the same side of w or because
they see each other through the window in w. You may assume general position.

Exercise 9.44. Recall that a point c is a centerpoint of P if every halfplane containing
c contains at least |P|/3 points in P.

Identify the properties of e, h and l that show that 0 is a centerpoint of P.

Exercise 9.45. Show that yi = −yn−2−i and yi 6 0 for all 0 6 i 6 bn−2
2
c. (We refer

here to the yi’s as defined by relations (9.3) at the beginning of this section. Hint:
You may wish to recall Homework 9.35 and Exercise 9.33.)

Exercise 9.46. Show that hi > hi−1 for all 0 6 bn−3
2
c.

160

Geometry: C&A 2019 9.2. Embracing k-Sets in the Plane

Questions

49. Explain how the h-vector of a planar point set is defined via a lifting. Give the
relation between the e-vector (number of embracing k-sets) and the h-vector.

All of the following three questions also include Question 49.

50. Argue, why the h-vector is independent of the lifting.

51. Show how the `-vector can be computed in O(n logn) time.

52. Argue why the `-vector is symmetric (`i = `n−1−i for all i, 0 6 i 6 n− 1).

161

Chapter 10

Crossings

So far within this course we have mostly tried to avoid edge crossings and studied classes
of planar graphs that allow us to avoid crossings altogether. However, without doubt
there are many interesting graphs that are not planar, and still we would like to draw
them in a reasonable fashion. An obvious quantitative approach is to still avoid crossings
as much as possible, even if they cannot be avoided completely.

For a graph G = (V, E), the crossing number cr(G) is defined as the minimum
number of edge crossings over all possible drawings of G. In an analogous fashion, the
rectilinear crossing number cr(G) is defined as the minimum number of edge crossings
over all possible straight-line drawings of G.

In order to see that thes notions are well-defined, let us first argue that the number of
crossings in a minimum-crossing drawing is finite and, in fact, upper bounded by

(
|E|
2

)
.

Lemma 10.1. In a drawing of a graph G with cr(G) crossings, every two distinct edges
share at most one point.

Proof. By a rerouting argument. . .

In particular, by Lemma 10.1 no two adjacent edges (that is, edges that have a
common endpoint) cross. A drawing that satisfies the statement of Lemma 10.1 is called
a simple topological drawing. So, using this term, Lemma 10.1 could also be stated as
“Every minimum-crossing drawing is a simple topological drawing.”

It is quite easy to give an upper bound on the crossing number of a particular graph,
simply by describing a drawing and counting the number of crossings in that drawing.
Conversely, it is much harder to give a lower bound on the crossing number of a graph
because such a bound corresponds to a statement about all possible drawings of that
graph. But the following simple lower bound can be obtained by counting edges.

Lemma 10.2. For a graph G with n > 3 vertices and e edges, we have cr(G) >
e− (3n− 6).

Proof. Consider a drawing of G = (V, E) with cr(G) crossings. For each crossing, pick
one of the two involved edges arbitrarily. Obtain a new graph G ′ = (V, E ′) from G by

162

Geometry: C&A 2019

removing all picked edges. By construction G ′ is plane and, therefore, |E ′| 6 3n − 6 by
Corollary 2.5. As at most cr(G) edges were picked (some edge could be picked for several
crossings), we have |E ′| > |E|− cr(G). Combining both bounds completes the proof.

The bound in Lemma 10.2 is quite good if the number of edges is close to 3n but not
so good for dense graphs. For instance, for the complete graph Kn the lemma guarantees
a quadratic number of crossings, whereas according to the Harary-Hill Conjecture [3]

cr(Kn) =
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
∈ Θ(n4).

So for a dense graph G we should try a different approach. Given that the bound in
Lemma 10.2 is not so bad for sparse graphs, why not apply it to some sparse subgraph of
G? This astonishingly simple idea turns out to work really well, as the following theorem
demonstrates.

Theorem 10.3 (Crossing Lemma [2]). For a graph G with n vertices and e > 4n edges,
we have cr(G) > e3/(64n2).

Proof. Consider a drawing of G with cr(G) crossings. Take a random induced subgraph
of G by selecting each vertex independently with probability p (a suitable value for p
will be determined later). By this process we obtain a random subset U ⊆ V and the
corresponding induced subgraph G[U], along with an induced drawing for G[U]. Consider
the following three random variables:

� N, the number of vertices selected, with E[N] = pn;

� M, the number of edges induced by the selected vertices, with E[M] = p2e; and

� C, the number of crossings induced by the selected vertices and edges, with E[C] =
p4cr(G). (Here we use that adjacent edges do not cross in a minimum-crossing
drawing by Lemma 10.1.)

According to Lemma 10.2, these quantities satisfy C > cr(G[U]) >M − 3N. Taking
expectations on both sides and using linearity of expectation yields E[C] > E[M]−3E[N]
and so p4cr(G) > p2e − 3pn. Setting p = 4n/e (which is 6 1 due to the assumption
e > 4n) gives

cr(G) >
e

p2
− 3

n

p3
=

e3

16n2
− 3

e3

64n2
=

e3

64n2

The constant 1/64 in the statement of Theorem 10.3 is not the best possible. On one
hand, Ackerman [1] showed that 1/64 can be replaced by 1/29, at the cost of requiring
e > 7n. On the other hand, Pach and Tóth [4] describe graphs with n � e � n2 that
have crossing number at most

16

27π2
e3

n2
<

1

16.65

e3

n2
.

163

Chapter 10. Crossings Geometry: C&A 2019

Hence it is not possible to replace 1/64 by 1/16.65 in the statement of Theorem 10.3.
In the remainder of this chapter, we will discuss several nontrivial bounds on the size

of combinatorial structures that can be obtained by a more-or-less straightforward appli-
cation of the Crossing Lemma. These beautiful connections were observed by Székely [5],
the original proofs were different and more involved.

Theorem 10.4 (Szemerédi-Trotter [6]). The maximum number of incidences between n
points and m lines in R2 is at most 3

√
32 · n2/3m2/3 + 4n+m.

Proof. Let P denote the given set of n points, and let L denote the given set of m lines.
We may suppose that every line from L contains at least one point from P. (Discard all
lines that do not; they do not contribute any incidence.) Denote by I the number of
incidences between P and L. Consider the graph G = (P, E) whose vertex set is P, and
where a pair p, q of points is connected by an edge if p and q appear consecutively along
some line ` ∈ L (that is, both p and q are incident to ` and no other point from P lies
on the line segment pq). Using the straight-line drawing induced by the arrangement of
L we may regard G as a geometric graph with at most

(
m
2

)
crossings.

Every line from L contains k > 1 point(s) from P and contributes k − 1 edges to G.
Hence |E| = I −m. If |E| 6 4n, then I 6 4n +m and the theorem holds. Otherwise, we
can apply the Crossing Lemma to obtain(

m

2

)
> cr(G) >

|E|3

64n2

and so I 6 3
√
32n2/3m2/3 +m.

Theorem 10.5. The maximum number of unit distances determined by n points in R2

is at most 5n4/3.

Proof. Let P denote the given set of n points, and consider the set C of n unit circles
centered at the points in P. Then the number I of incidences between P and C is exactly
twice the number of unit distances between points from P.

Define a graph G = (P, E) on P where two vertices p and q are connected by an edge
if they appear consecutively along some circle c ∈ C (that is, p, q ∈ c and at least one of
the circular arcs of c between p and q does not contain any other point from P). Clearly
|E| = I.

Obtain a new graph G ′ = (P, E ′) from G by removing all edges along circles from C

that contain at most two points from P. Note that |C| = n and that every circle whose
edges are removed contributes at most two edges to G. Therefore |E ′| > |E| − 2n. In
G ′ there are no loops and no two vertices are connected by two edges along the same
circle. Therefore, any two vertices are connected by at most two edges because there are
exactly two distinct unit circles passing through any two distinct points in R2.

Obtain a new graph G ′′ = (P, E ′′) from G ′ by removing one copy of every double
edge. Clearly G ′′ is a simple graph with |E ′′| > |E ′|/2 > (|E|/2) − n. As every pair of
circles intersects in at most two points, we have cr(G ′′) 6 2

(
n
2

)
6 n2.

164

Geometry: C&A 2019

If |E ′′| 6 4n, then (|E|/2) − n 6 4n and so I = |E| 6 10n < 10n4/3 and the theorem
holds. Otherwise, by the Crossing Lemma we have

n2 > cr(G ′′) >
|E ′′|3

64n2

and so |E ′′| 6 4n4/3. It follows that I = |E| 6 8n4/3 + 2n 6 10n4/3.

Theorem 10.6. For A ⊂ R with |A| = n > 3 we have max {|A+A|, |A ·A|} > 1
4
n5/4.

Proof. Let A = {a1, . . . , an}. Set X = A + A and Y = A · A. We will show that
|X||Y| > 1

16
n5/2, which proves the theorem. Let P = X × Y ⊂ R2 be the set of points

whose x-coordinate is in X and whose y-coordinate is in Y. Clearly |P| = |X||Y|. Next
define a set L of lines by `ij = {(x, y) ∈ R2 : y = ai(x− aj)}, for i, j ∈ {1, . . . , n}. Clearly
|L| = n2.

On the one hand, every line `ij contains at least n points from P because for xk =
aj+ak ∈ X and yk = ai(xk−aj) = aiak ∈ Y we have (xk, yk) ∈ P∩`ij, for k ∈ {1, . . . , n}.
Therefore the number I of incidences betwen P and L is at least n3.

On the other hand, by the Szemerédi-Trotter Theorem we have I 6 3
√
32|P|2/3n4/3 +

4|P|+ n2. Combining both bounds we obtain

n3 6
3
√
32|P|2/3n4/3 + 4|P|+ n2.

Hence either 4|P|+n2 > n3

2
, which implies |P| > 1

16
n5/2, for n > 3; or 3

√
32 |P|2/3n4/3 > n3

2

and thus

|P|2/3 >
n3

2
3
√
32n4/3

=

(
n5

256

)1/3
=⇒ |P| >

n5/2

16
.

Exercise 10.7. Consider two edges e and f in a topological plane drawing so that e and
f cross at least twice. Prove or disprove: There exist always two distinct crossings
x and y of e and f so that the portion of e between x and y is not crossed by f and
the portion of f between x and y is not crossed by e.

Exercise 10.8. Let G be a graph with n > 3 vertices, e edges, and cr(G) = e−(3n− 6).
Show that in every drawing of G with cr(G) crossings, every edge is crossed at most
once.

Exercise 10.9. Consider the abstract graph G that is obtained as follows: Start from
a plane embedding of the 3-dimensional (hyper-)cube, and add in every face a pair
of (crossing) diagonals. Show that cr(G) = 6 < cr(G).

Exercise 10.10. A graph is 1-planar if it can be drawn in the plane so that every edge
is crossed at most once. Show that a 1-planar graph on n > 3 vertices has at most
4n− 8 edges.

165

Chapter 10. Crossings Geometry: C&A 2019

Exercise 10.11. Show that the bound from the Crossing Lemma is asymptotically tight:
There exists a constant c so that for every n, e ∈ N with e 6

(
n
2

)
there is a graph with

n vertices and e edges that admits a plane drawing with at most ce3/n2 crossings.

Exercise 10.12. Show that the maximum number of unit distances determined by n
points in R2 is Ω(n logn). Hint: Consider the hypercube.

Questions

54. What is the crossing number of a graph? What is the rectilinear crossing
number? Give the definitions and examples. Explain the difference.

55. For a nonplanar graph, the more edges it has, the more crossings we would
expect. Can you quantify such a correspondence more precisely? State and
prove Lemma 10.2 and Theorem 10.3 (The Crossing Lemma).

56. Why is it called “Crossing Lemma” rather than “Crossing Theorem”? Explain
at least two applications of the Crossing Lemma, for instance, your pick out of the
theorems 10.4, 10.5, and 10.6.

References

[1] Eyal Ackerman, On topological graphs with at most four crossings per edge. CoRR,
abs/1509.01932.

[2] Miklós Ajtai, Václav Chvátal, Monroe M. Newborn, and Endre Szemerédi, Crossing-
free subgraphs. Ann. Discrete Math., 12, (1982), 9–12.

[3] Frank Harary and Anthony Hill, On the number of crossings in a complete graph.
Proc. Edinburgh Math. Soc., 13, 4, (1963), 333–338.

[4] János Pach and Géza Tóth, Graphs drawn with few crossings per edge. Combina-
torica, 17, 3, (1997), 427–439.

[5] László A. Székely, Crossing numbers and hard Erdős problems in discrete geometry.
Combinatorics, Probability and Computing, 6, 3, (1997), 353–358.

[6] Endre Szemerédi and William T. Trotter, Jr., Extremal problems in discrete geome-
try. Combinatorica, 3, 3–4, (1983), 381–392.

166

http://arxiv.org/abs/1509.01932
https://doi.org/10.1016/S0304-0208(08)73484-4
https://doi.org/10.1016/S0304-0208(08)73484-4
https://doi.org/10.1017/S0013091500025645
https://doi.org/10.1007/BF01215922
https://doi.org/10.1017/S0963548397002976
https://doi.org/10.1007/BF02579194
https://doi.org/10.1007/BF02579194

Appendix A

Line Sweep

In this chapter we will discuss a simple and widely applicable paradigm to design ge-
ometric algorithms: the so-called Line-Sweep (or Plane-Sweep) technique. It can be
used to solve a variety of different problems, some examples are listed below. The first
part may come as a reminder to many of you, because you should have heard something
about line-sweep in one of the basic CS courses already. However, we will soon proceed
and encounter a couple of additional twists that were most likely not covered there.

Consider the following geometric problems.

Problem A.1 (Simple Polygon Test). Given a sequence P =
(p1, . . . , pn) of points in R2, does P describe the boundary
of a simple polygon?

?

Problem A.2 (Polygon Intersection). Given two simple
polygons P and Q in R2 as a (counterclockwise) sequence
of their vertices, is P ∩Q = ∅?

?

Problem A.3 (Segment Intersection Test). Given a set S of
n closed line segments in R2, do any two of them inter-
sect?

?

Remark: In principle it is clear what is meant by “two segments intersect”. But there
are a few special cases that one may have to consider carefully. For instance, does it count
if an endpoint lies on another segment? What if two segments share an endpoint? What
about overlapping segments and segments of length zero? In general, let us count all
these as intersections. However, sometimes we may want to exclude some of these cases.
For instance, in a simple polygon test, we do not want to consider the shared endpoint
between two consecutive edges of the boundary as an intersection.

Problem A.4 (Segment Intersections). Given a set S of n
closed line segments in R2, compute all pairs of segments
that intersect.

⇒

167

Appendix A. Line Sweep Geometry: C&A 2019

Problem A.5 (Segment Arrangement). Given a set S of n
closed line segments in R2, construct the arrangement
induced by S, that is, the subdivision of R2 induced by S.

⇒

Problem A.6 (Map Overlay). Given two sets S and T of
n and m, respectively, pairwise interior disjoint line seg-
ments in R2, construct the arrangement induced by S∪T .

⇒

In the following we will use Problem A.4 as our flagship example.

Trivial Algorithm. Test all the
(
n
2

)
pairs of segments from S inO(n2) time andO(n) space.

For Problem A.4 this is worst-case optimal because there may by Ω(n2) intersecting
pairs.

But in case that the number of intersecting pairs is, say, linear in n there is still hope
to obtain a subquadratic algorithm. Given that there is a lower bound of Ω(n logn) for
Element Uniqueness (Given x1, . . . , xn ∈ R, is there an i 6= j such that xi = xj?) in the
algebraic computation tree model, all we can hope for is an output-sensitive runtime of
the form O(n logn+ k), where k denotes the number of intersecting pairs (output size).

A.1 Interval Intersections

As a warmup let us consider the corresponding problem in R1.

Problem A.7. Given a set I of n intervals [`i, ri] ⊂ R, 1 6 i 6 n. Compute all pairs of
intervals from I that intersect.

Theorem A.8. Problem A.7 can be solved in O(n logn+k) time and O(n) space, where
k is the number of intersecting pairs from

(
I
2

)
.

Proof. First observe that two real intervals intersect if and only if one contains the right
endpoint of the other.

Sort the set {(`i, 0) | 1 6 i 6 n} ∪ {(ri, 1) | 1 6 i 6 n} in increasing lexicographic order
and denote the resulting sequence by P. Store along with each point from P its origin
(i). Walk through P from start to end while maintaining a list L of intervals that contain
the current point p ∈ P.

Whenever p = (`i, 0), 1 6 i 6 n, insert i into L. Whenever p = (ri, 1), 1 6 i 6 n,
remove i from L and then report for all j ∈ L the pair {i, j} as intersecting.

A.2 Segment Intersections

How can we transfer the (optimal) algorithm for the corresponding problem in R1 to the
plane? In R1 we moved a point from left to right and at any point resolved the situation
locally around this point. More precisely, at any point during the algorithm, we knew all

168

Geometry: C&A 2019 A.2. Segment Intersections

intersections that are to the left of the current (moving) point. A point can be regarded
a hyperplane in R1, and the corresponding object in R2 is a line.

General idea. Move a line ` (so-called sweep line) from left to right over the plane, such
that at any point during this process all intersections to the left of ` have been reported.

Sweep line status. The list of intervals containing the current point corresponds to a list L
of segments (sorted by y-coordinate) that intersect the current sweep line `. This list L is
called sweep line status (SLS). Considering the situation locally around L, it is obvious
that only segments that are adjacent in L can intersect each other. This observation
allows to reduce the overall number of intersection tests, as we will see. In order to
allow for efficient insertion and removal of segments, the SLS is usually implemented as
a balanced binary search tree.

Event points. The order of segments in SLS can change at certain points only: whenever
the sweep line moves over a segment endpoint or a point of intersection of two segments
from S. Such a point is referred to as an event point (EP) of the sweep. Therefore we
can reduce the conceptually continuous process of moving the sweep line over the plane
to a discrete process that moves the line from EP to EP. This discretization allows for
an efficient computation.

At any EP several events can happen simultaneously: several segments can start
and/or end and at the same point a couple of other segments can intersect. In fact
the sweep line does not even make a difference between any two event points that have
the same x-coordinate. To properly resolve the order of processing, EPs are considered
in lexicographic order and wherever several events happen at a single point, these are
considered simultaneously as a single EP. In this light, the sweep line is actually not a
line but an infinitesimal step function (see Figure A.1).

Event point schedule. In contrast to the one-dimensional situation, in the plane not all
EP are known in advance because the points of intersection are discovered during the
algorithm only. In order to be able to determine the next EP at any time, we use a
priority queue data structure, the so-called event point schedule (EPS).

Along with every EP p store a list end(p) of all segments that end at p, a list begin(p)
of all segments that begin at p, and a list int(p) of all segments in SLS that intersect at
p a segment that is adjacent to it in SLS.

Along with every segment we store pointers to all its appearances in an int(·) list of
some EP. As a segment appears in such a list only if it intersects one of its neighbors
there, every segment needs to store at most two such pointers.

169

Appendix A. Line Sweep Geometry: C&A 2019

p

1

2

3

4

5

6

7

2

3

5

(a) Before.

p

1

2

3

4

5

6

7

2

3

5

(b) After.

Figure A.1: Handling an event point p. Ending segments are shown red (dashed),
starting segments green (dotted), and passing segments blue (solid).

Invariants. The following conditions can be shown to hold before and after any event
point is handled. (We will not formally prove this here.) In particular, the last condition
at the end of the sweep implies the correctness of the algorithm.

1. L is the sequence of segments from S that intersect `, ordered by y-coordinate of
their point of intersection.

2. E contains all endpoints of segments from S and all points where two segments that
are adjacent in L intersect to the right of `.

3. All pairs from
(
S
2

)
that intersect to the left of ` have been reported.

Event point handling. An EP p is processed as follows.

1. If end(p) ∪ int(p) = ∅, localize p in L.

2. Report all pairs of segments from end(p) ∪ begin(p) ∪ int(p) as intersecting.

3. Remove all segments in end(p) from L.

4. Reverse the subsequence in L that is formed by the segments from int(p).

5. Insert segments from begin(p) into L, sorted by slope.

6. Test the topmost and bottommost segment in L from begin(p)∪ int(p) for intersec-
tion with its successor and predecessor, respectively, and update EP if necessary.

170

Geometry: C&A 2019 A.2. Segment Intersections

Updating EPS. Insert an EP p corresponding to an intersection of two segments s and
t. Without loss of generality let s be above t at the current position of `.

1. If p does not yet appear in E, insert it.

2. If s is contained in an int(·) list of some other EP q, where it intersects a segment
t ′ from above: Remove both s and t ′ from the int(·) list of q and possibly remove
q from E (if end(q) ∪ begin(q) ∪ int(q) = ∅). Proceed analogously in case that t
is contained in an int(·) list of some other EP, where it intersects a segment from
below.

3. Insert s and t into int(p).

Sweep.

1. Insert all segment endpoints into begin(·)/end(·) list of a corresponding EP in E.

2. As long as E 6= ∅, handle the first EP and then remove it from E.

Runtime analysis. Initialization: O(n logn). Processing of an EP p:

O(#intersecting pairs+ |end(p)| logn+ |int(p)|+ |begin(p)| logn+ logn).

In total: O(k+n logn+k logn) = O((n+k) logn), where k is the number of intersecting
pairs in S.

Space analysis. Clearly |S| 6 n. At begin we have |E| 6 2n and |S| = 0. Furthermore the
number of additional EPs corresponding to points of intersection is always bounded by
2|S|. Thus the space needed is O(n).

Theorem A.9. Problem A.4 and Problem A.5 can be solved in O((n + k) logn) time
and O(n) space.

Theorem A.10. Problem A.1, Problem A.2 and Problem A.3 can be solved in O(n logn)
time and O(n) space.

Exercise A.11. Flesh out the details of the sweep line algorithm for Problem A.2 that
is referred to in Theorem A.10. What if you have to construct the intersection
rather than just to decide whether or not it is empty?

Exercise A.12. You are given n axis–parallel rectangles in R2 with their bottom sides
lying on the x–axis. Construct their union in O(n logn) time.

171

Appendix A. Line Sweep Geometry: C&A 2019

A.3 Improvements

The basic ingredients of the line sweep algorithm go back to work by Bentley and
Ottmann [2] from 1979. The particular formulation discussed here, which takes all
possible degeneracies into account, is due to Mehlhorn and Näher [9].

Theorem A.10 is obviously optimal for Problem A.3, because this is just the 2-
dimensional generalization of Element Uniqueness (see Section 1.1). One might suspect
there is also a similar lower bound of Ω(n logn) for Problem A.1 and Problem A.2.
However, this is not the case: Both can be solved in O(n) time, albeit using a very
complicated algorithm of Chazelle [4] (the famous triangulation algorithm).

Similarly, it is not clear why O(n logn + k) time should not be possible in Theo-
rem A.9. Indeed this was a prominent open problem in the 1980’s that has been solved
in several steps by Chazelle and Edelsbrunner in 1988. The journal version of their
paper [5] consists of 54 pages and the space usage is suboptimal O(n+ k).

Clarkson and Shor [6] and independently Mulmuley [10, 11] described randomized
algorithms with expected runtime O(n logn+k) using O(n) and O(n+k), respectively,
space.

An optimal deterministic algorithm, with runtime O(n logn + k) and using O(n)
space, is known since 1995 only due to Balaban [1].

A.4 Algebraic degree of geometric primitives

We already have encountered different notions of complexity during this course: We can
analyze the time complexity and the space complexity of algorithms and both usually
depend on the size of the input. In addition we have seen examples of output-sensitive
algorithms, whose complexity also depends on the size of the output. In this section,
we will discuss a different kind of complexity that is the algebraic complexity of the
underlying geometric primitives. In this way, we try to shed a bit of light into the
bottom layer of geometric algorithms that is often swept under the rug because it consists
of constant time operations only. Nevertheless, it would be a mistake to disregard this
layer completely, because in most—if not every—real world application it plays a crucial
role, by affecting efficiency as well as correctness. Regarding efficiency, the value of the
constants involved can make a big difference. The possible effects on correctness will
hopefully become clear in the course of this section.

In all geometric algorithms there are some fundamental geometric predicates and/or
constructions on the bottom level. Both are operations on geometric objects, the differ-
ence is only in the result: The result of a construction is a geometric object (for instance,
the point common to two non-parallel lines), whereas the result of a predicate is Boolean
(true or false).

Geometric predicates and constructions in turn are based on fundamental arithmetic
operations. For instance, we formulated planar convex hull algorithms in terms of an
orientation predicate—given three points p, q, r ∈ R2, is r strictly to the right of the ori-

172

Geometry: C&A 2019 A.4. Algebraic degree of geometric primitives

ented line pr— which can be implemented using multiplication and addition/subtraction
of coordinates/numbers. When using limited precision arithmetic, it is important to keep
an eye on the size of the expressions that occur during an evaluation of such a predicate.

In Exercise 4.27 we have seen that the orientation predicate can be computed by
evaluating a polynomial of degree two in the input coordinates and, therefore, we say
that

Proposition A.13. The rightturn/orientation predicate for three points in R2 has al-
gebraic degree two.

The degree of a predicate depends on the algebraic expression used to evaluate it.
Any such expression is intimately tied to the representation of the geometric objects
used. Where not stated otherwise, we assume that geometric objects are represented
as described in Section 1.2. So in the proposition above we assume that points are
represented using Cartesian coordinates. The situation might be different, if, say, a
polar representation is used instead.

But even once a representation is agreed upon, there is no obvious correspondence to
an algebraic expression that describes a given predicate. In fact, it is not even clear why
such an expression should exist in general. But if it does—as, for instance, in case of the
orientation predicate—we prefer to work with a polynomial of smallest possible degree.
Therefore we define the (algebraic) degree of a geometric predicate as the minimum
degree of a polynomial that defines it (predicate true ⇐⇒ polynomial positive). So
there still is something to be shown in order to complete Proposition A.13.

Exercise A.14. Show that there is no polynomial of degree at most one that describes
the orientation test in R2.

Hint: Let p = (0, 0), q = (x, 0), and r = (0, y) and show that there is no linear
function in x and y that distinguishes the region where pqr form a rightturn from
its complement.

The degree of a predicate corresponds to the size of numbers that arise during its
evaluation. If all input coordinates are k-bit integers then the numbers that occur during
an evaluation of a degree d predicate on these coordinates are of size about1 dk. If the
number type used for the computation can represent all such numbers, the predicate
can be evaluated exactly and thus always correctly. For instance, when using a standard
IEEE double precision floating point implementation which has a mantissa length of 53
bit then the above orientation predicate can be evaluated exactly if the input coordinates
are integers between 0 and 225, say.

Let us now get back to the line segment intersection problem. It needs a few new
geometric primitives: most prominently, constructing the intersection point of two line
segments.

1It is only about dk because not only multiplications play a role but also additions. As a rule of thumb,
a multiplication may double the bitsize, while an addition may increase it by one.

173

Appendix A. Line Sweep Geometry: C&A 2019

Two segments. Given two line segments s = λa + (1 − λ)b, λ ∈ [0, 1] and t = µc + (1 −
µ)d, µ ∈ [0, 1], it is a simple exercise in linear algebra to compute s ∩ t. Note that s ∩ t
is either empty or a single point or a line segment.

For a = (ax, ay), b = (bx, by), c = (cx, cy), and d = (dx, dy) we obtain two linear
equations in two variables λ and µ.

λax + (1− λ)bx = µcx + (1− µ)dx

λay + (1− λ)by = µcy + (1− µ)dy

Rearranging terms yields

λ(ax − bx) + µ(dx − cx) = dx − bx

λ(ay − by) + µ(dy − cy) = dy − by

Assuming that the lines underlying s and t have distinct slopes (that is, they are neither
identical nor parallel) we have

D =

∣∣∣∣ ax − bx dx − cx
ay − by dy − cy

∣∣∣∣ =
∣∣∣∣∣∣∣∣
ax ay 1 0

bx by 1 0

cx cy 0 1

dx dy 0 1

∣∣∣∣∣∣∣∣ 6= 0
and using Cramer’s rule

λ =
1

D

∣∣∣∣ dx − bx dx − cx
dy − by dy − cy

∣∣∣∣ and µ =
1

D

∣∣∣∣ ax − bx dx − bx
ay − by dy − by

∣∣∣∣ .
To test if s and t intersect, we can—after having sorted out the degenerate case in
which both segments have the same slope—compute λ and µ and then check whether
λ, µ ∈ [0, 1].

Observe that both λ and D result from multiplying two differences of input coor-
dinates. Computing the x-coordinate of the point of intersection via bx + λ(ax − bx)
uses another multiplication. Overall this computation yields a fraction whose numerator
is a polynomial of degree three in the input coordinates and whose denominator is a
polynomial of degree two in the input coordinates.

In order to maintain the sorted order of event points in the EPS, we need to compare
event points lexicographically. In case that both are intersection points, this amounts
to comparing two fractions of the type discussed above. In order to formulate such a
comparison as a polynomial, we have to cross-multiply the denominators, and so obtain
a polynomial of degree 3+ 2 = 5. It can be shown (but we will not do it here) that this
bound is tight and so we conclude that

Proposition A.15. The algebraic degree of the predicate that compares two intersection
points of line segments lexicographically is five.

174

Geometry: C&A 2019 A.5. Red-Blue Intersections

Therefore the coordinate range in which this predicate can be evaluated exactly using
IEEE double precision numbers shrinks down to integers between 0 and about 210 =
1 ′024.

Exercise A.16. What is the algebraic degree of the predicate checking whether two
line segments intersect? (Above we were interested in the actual intersection point,
but now we consider the predicate that merely answers the question whether two
segments intersect or not by yes or no).

A.5 Red-Blue Intersections

Although the Bentley-Ottmann sweep appears to be rather simple, its implementation
is not straightforward. For once, the original formulation did not take care of possible
degeneracies—as we did in the preceding section. But also the algebraic degree of the
predicates used is comparatively high. In particular, comparing two points of intersection
lexicographically is a predicate of degree five, that is, in order to compute it, we need to
evaluate a polynomial of degree five. When evaluating such a predicate with plain floating
point arithmetic, one easily gets incorrect results due to limited precision roundoff errors.
Such failures frequently render the whole computation useless. The line sweep algorithm
is problematic in this respect, as a failure to detect one single point of intersection often
implies that no other intersection of the involved segments to the right is found.

In general, predicates of degree four are needed to construct the arrangement of line
segments because one needs to determine the orientation of a triangle formed by three
segments. This is basically an orientation test where two points are segment endpoints
and the third point is an intersection point of segments. Given that the coordinates of
the latter are fractions, whose numerator is a degree three polynomial and the common
denominator is a degree two polynomial, we obtain a degree four polynomial overall.

Motivated by the Map overlay application we consider here a restricted case. In the
red-blue intersection problem, the input consists of two sets R (red) and B (blue) of
segments such that the segments in each set are interior-disjoint, that is, for any pair of
distinct segments their relative interior is disjoint. In this case there are no triangles of
intersecting segments, and it turns out that predicates of degree two suffice to construct
the arrangement. This is optimal because already the intersection test for two segments
is a predicate of degree two.

Predicates of degree two. Restricting to degree two predicates has certain consequences.
While it is possible to determine the position of a segment endpoint relative to a(nother)
segment using an orientation test, one cannot, for example, compare a segment endpoint
with a point of intersection lexicographically. Even computing the coordinates for a
point of intersection is not possible. Therefore the output of intersection points is done
implicitly, as “intersection of s and t”.

Graphically speaking we can deform any segment—keeping its endpoints fixed—as
long as it remains monotone and it does not reach or cross any segment endpoint (it

175

Appendix A. Line Sweep Geometry: C&A 2019

did not touch before). With help of degree two predicates there is no way to tell the
difference.

Witnesses. Using such transformations the processing of intersection points is deferred as
long as possible (lazy computation). The last possible point w(s, t) where an intersection
between two segments s and t has to be processed we call the witness of the intersection.
The witness w(s, t) is the lexicographically smallest segment endpoint that is located
within the closed wedge formed by the two intersecting segments s and t to the right
of the point of intersection (Figure A.2). Note that each such wedge contains at least
two segment endpoints, namely the right endpoints of the two intersecting segments.
Therefore for any pair of intersecting segments its witness is well-defined.

s

t

w

Figure A.2: The witness w(s, t) of an intersection s ∩ t.

As a consequence, only the segment endpoints are EPs and the EPS can be determined
by lexicographic sorting during initialization. On the other hand, the SLS structure gets
more complicated because its order of segments does not necessarily reflect the order in
which the segments intersect the sweep line.

Invariants. The invariants of the algorithm have to take the relaxed notion of order into
account. Denote the sweep line by `.

1. L is the sequence of segments from S = R ∪ B intersecting `; s appears before t in
L =⇒ s intersects ` above t or s intersects t and the witness of this intersection is
to the right of `.

2. All intersections of segments from S whose witness is to the left of ` have been
reported.

SLS Data Structure. The SLS structure consist of three levels. We use the fact that
segments of the same color do not interact, except by possibly sharing endpoints.

1. Collect adjacent segments of the same color in bundles, stored as balanced search
trees. For each bundle store pointers to the topmost and bottommost segment.
(As the segments within one bundle are interior-disjoint, their order remains static
and thus correct under possible deformations due to lazy computation.)

2. All bundles are stored in a doubly linked list, sorted by y-coordinate.

176

Geometry: C&A 2019 A.5. Red-Blue Intersections

List

Bundle
Tree

Figure A.3: Graphical representation of the SLS data structure.

3. All red bundles are stored in a balanced search tree (bundle tree).

The search tree structure should support insert, delete, split and merge in (amortized)
logarithmic time each. For instance, splay trees [12] meet these requirements. (If you
have never heard about splay trees so far, you do not need to know for our purposes
here. Just treat them as a black box. However, you should take a note and read about
splay trees still. They are a fascinating data structure.)

EP handling. An EP p is processed as follows.

1. We first want to classify all bundles with respect to their position relative to p: as
either lying above or below p or as ending at p. There are 6 2 bundles that have
no clear such characterization.

(a) Localize p in bundle tree → Find 6 2 bundles without clear characteriza-
tion. For the localization we use the pointers to the topmost and bottommost
segment within a bundle.

(b) Localize p in 6 2 red bundles found and split them at p. (If p is above the
topmost or below the bottommost segment of the bundle, there is no split.)
All red bundles are now either above, ending, or below with respect to p.

(c) Localize p within the blue bundles by linear search.

(d) Localize p in the 6 2 blue bundles found and split them at p. (If p is above the
topmost or below the bottommost segment of the bundle, there is no split.)
All bundles are now either above, ending, or below with respect to p.

2. Run through the list of bundles around p. More precisely, start from one of the
bundles containing p found in Step 1 and walk up in the doubly linked list of
bundles until two successive bundles (hence of opposite color) are both above p.
Similarly, walk down in the doubly linked list of bundles, until two successive
bundles are both below p. Handle all adjacent pairs of bundles (A,B) that are in

177

Appendix A. Line Sweep Geometry: C&A 2019

wrong order and report all pairs of segments as intersecting. (Exchange A and B
in the bundle list and merge them with their new neighbors.)

3. Report all two-colored pairs from begin(p)× end(p) as intersecting.

4. Remove ending bundles and insert starting segments, sorted by slope and bundled
by color and possibly merge with the closest bundle above or below.

Remark: As both the red and the blue segments are interior-disjoint, at every EP there
can be at most one segment that passes through the EP. Should this happen, for the
purpose of EP processing split this segment into two, one ending and one starting at this
EP. But make sure to not report an intersection between the two parts!

Analysis. Sorting the EPS: O(n logn) time. Every EP generates a constant number of
tree searches and splits of O(logn) each. Every exchange in Step 2 generates at least
one intersection. New bundles are created only by inserting a new segment or by one
of the constant number of splits at an EP. Therefore O(n) bundles are created in total.
The total number of merge operations is O(n), as every merge kills one bundle and O(n)
bundles are created overall. The linear search in steps 1 and 2 can be charged either to
the ending bundle or—for continuing bundles—to the subsequent merge operation. In
summary, we have a runtime of O(n logn+ k) and space usage is linear obviously.

Theorem A.17. For two sets R and B, each consisting of interior-disjoint line segments
in R2, one can find all intersecting pairs of segments in O(n logn + k) time and
linear space, using predicates of maximum degree two. Here n = |R| + |B| and k is
the number of intersecting pairs.

Remarks. The first optimal algorithm for the red-blue intersection problem was pub-
lished in 1988 by Harry Mairson and Jorge Stolfi [7]. In 1994 Timothy Chan [3] described
a trapezoidal-sweep algorithm that uses predicates of degree three only. The approach
discussed above is due to Andrea Mantler and Jack Snoeyink [8] from 2000.

Exercise A.18. Let S be a set of n segments each of which is either horizontal or
vertical. Describe an O(n logn) time and O(n) space algorithm that counts the
number of pairs in

(
S
2

)
that intersect.

Questions

57. How can one test whether a polygon on n vertices is simple? Describe an
O(n logn) time algorithm.

58. How can one test whether two simple polygons on altogether n vertices inter-
sect? Describe an O(n logn) time algorithm.

178

Geometry: C&A 2019 A.5. Red-Blue Intersections

59. How does the line sweep algorithm work that finds all k intersecting pairs
among n line segments in R2? Describe the algorithm, using O((n + k) logn)
time and O(n) space. In particular, explain the data structures used, how event
points are handled, and how to cope with degeneracies.

60. Given two line segments s and t in R2 whose endpoints have integer coordi-
nates in [0, 2b); suppose s and t intersect in a single point q, what can you
say about the coordinates of q? Give a good (tight up to small additive number
of bits) upper bound on the size of these coordinates. (No need to prove tightness,
that is, give an example which achieves the bound.)

61. What is the degree of a predicate and why is it an important parameter? What
is the degree of the orientation test and the incircle test in R2? Explain the
term and give two reasons for its relevance. Provide tight upper bounds for the
two predicates mentioned. (No need to prove tightness.)

62. What is the map overlay problem and how can it be solved optimally using
degree two predicates only? Give the problem definition and explain the term
“interior-disjoint”. Explain the bundle-sweep algorithm, in particular, the data
structures used, how an event point is processed, and the concept of witnesses.

References

[1] Ivan J. Balaban, An optimal algorithm for finding segment intersections. In Proc.
11th Annu. ACM Sympos. Comput. Geom., pp. 211–219, 1995.

[2] Jon L. Bentley and Thomas A. Ottmann, Algorithms for reporting and counting
geometric intersections. IEEE Trans. Comput., C-28, 9, (1979), 643–647.

[3] Timothy M. Chan, A simple trapezoid sweep algorithm for reporting red/blue seg-
ment intersections. In Proc. 6th Canad. Conf. Comput. Geom., pp. 263–268,
1994.

[4] Bernard Chazelle, Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6, 5, (1991), 485–524.

[5] Bernard Chazelle and Herbert Edelsbrunner, An optimal algorithm for intersecting
line segments in the plane. J. ACM, 39, 1, (1992), 1–54.

[6] Kenneth L. Clarkson and Peter W. Shor, Applications of random sampling in com-
putational geometry, II. Discrete Comput. Geom., 4, (1989), 387–421.

[7] Harry G. Mairson and Jorge Stolfi, Reporting and counting intersections between
two sets of line segments. In R. A. Earnshaw, ed., Theoretical Foundations of
Computer Graphics and CAD, vol. 40 of NATO ASI Series F, pp. 307–325,
Springer-Verlag, Berlin, Germany, 1988.

179

https://doi.org/10.1145/220279.220302
https://doi.org/10.1109/TC.1979.1675432
https://doi.org/10.1109/TC.1979.1675432
https://cs.uwaterloo.ca/~tmchan/red_blue.ps.gz
https://cs.uwaterloo.ca/~tmchan/red_blue.ps.gz
https://doi.org/10.1007/BF02574703
https://doi.org/10.1145/147508.147511
https://doi.org/10.1145/147508.147511
https://doi.org/10.1007/BF02187740
https://doi.org/10.1007/BF02187740

Appendix A. Line Sweep Geometry: C&A 2019

[8] Andrea Mantler and Jack Snoeyink, Intersecting red and blue line segments in opti-
mal time and precision. In J. Akiyama, M. Kano, and M. Urabe, eds., Proc. Japan
Conf. Discrete Comput. Geom., vol. 2098 of Lecture Notes Comput. Sci., pp.
244–251, Springer Verlag, 2001.

[9] Kurt Mehlhorn and Stefan Näher, Implementation of a sweep line algorithm for
the straight line segment intersection problem. Report MPI-I-94-160, Max-Planck-
Institut Inform., Saarbrücken, Germany, 1994.

[10] Ketan Mulmuley, A fast planar partition algorithm, I. J. Symbolic Comput., 10,
3-4, (1990), 253–280.

[11] Ketan Mulmuley, A fast planar partition algorithm, II. J. ACM, 38, (1991), 74–103.

[12] Daniel D. Sleator and Robert E. Tarjan, Self-adjusting binary search trees. J. ACM,
32, 3, (1985), 652–686.

180

https://doi.org/10.1007/3-540-47738-1_23
https://doi.org/10.1007/3-540-47738-1_23
http://hdl.handle.net/11858/00-001M-0000-0014-B7A7-5
http://hdl.handle.net/11858/00-001M-0000-0014-B7A7-5
https://doi.org/10.1016/S0747-7171(08)80064-8
https://doi.org/10.1145/102782.102785
https://doi.org/10.1145/3828.3835

Appendix B

The Configuration Space Framework

In Section 6.1, we have discussed the incremental construction of the Delaunay trian-
gulation of a finite point set. In this lecture, we want to analyze the runtime of this
algorithm if the insertion order is chosen uniformly at random among all insertion or-
ders. We will do the analysis not directly for the problem of constructing the Delaunay
triangulation but in a somewhat more abstract framework, with the goal of reusing the
analysis for other problems.

Throughout this lecture, we again assume general position: no three points on a line,
no four on a circle.

B.1 The Delaunay triangulation — an abstract view

The incremental construction constructs and destroys triangles. In this section, we want
to take a closer look at these triangles, and we want to understand exactly when a triangle
is “there”.

Lemma B.1. Given three points p, q, r ∈ R, the triangle ∆(p, q, r) with vertices p, q, r
is a triangle of DT(R) if and only if the circumcircle of ∆(p, q, r) is empty of points
from R.

Proof. The “only if” direction follows from the definition of a Delaunay triangulation
(Definition 5.8). The “if” direction is a consequence of general position and Lemma 5.18:
if the circumcircle C of ∆(p, q, r) is empty of points from R, then all the three edges
pq, qr, pr are easily seen to be in the Delaunay graph of R. C being empty also implies
that the triangle ∆(p, q, r) is empty, and hence it forms a triangle of DT(R).

Next we develop a somewhat more abstract view of DT(R).

Definition B.2.

(i) For all p, q, r ∈ P, the triangle ∆ = ∆(p, q, r) is called a configuration. The
points p, q and r are called the defining elements of ∆.

181

Appendix B. The Configuration Space Framework Geometry: C&A 2019

(ii) A configuration ∆ is in conflict with a point s ∈ P if s is strictly inside the
circumcircle of ∆. In this case, the pair (∆, s) is called a conflict.

(iii) A configuration ∆ is called active w.r.t. R ⊆ P if (a) the defining elements of
∆ are in R, and (b) if ∆ is not in conflict with any element of R.

According to this definition and Lemma B.1, DT(R) consists of exactly the configu-
rations that are active w.r.t. R. Moreover, if we consider DT(R) and DT(R ∪ {s}) as sets
of configurations, we can exactly say how these two sets differ.

There are the configurations in DT(R) that are not in conflict with s. These config-
urations are still in DT(R ∪ {s}). The configurations of DT(R) that are in conflict with
s will be removed when going from R to R ∪ {s}. Finally, DT(R ∪ {s}) contains some new
configurations, all of which must have s in their defining set. According to Lemma B.1,
it cannot happen that we get a new configuration without s in its defining set, as such
a configuration would have been present in DT(R) already.

B.2 Configuration Spaces

Here is the abstract framework that generalizes the previous configuration view of the
Delaunay triangulation.

Definition B.3. Let X (the ground set) and Π (the set of configurations) be finite sets.
Furthermore, let

D : Π→ 2X

be a function that assigns to every configuration ∆ a set of defining elements D(∆).
We assume that only a constant number of configurations have the same defining
elements. Let

K : Π→ 2X

be a function that assigns to every configuration ∆ a set of elements in conflict with
∆ (the “killer” elements). We stipulate that D(∆) ∩ K(∆) = ∅ for all ∆ ∈ Π.

Then the quadruple S = (X,Π,D,K) is called a configuration space. The number

d = d(S) := max
∆∈Π

|D(∆)|

is called the dimension of S.
Given R ⊆ X, a configuration ∆ is called active w.r.t. R if

D(∆) ⊆ R and K(∆) ∩ R = ∅,

i.e. if all defining elements are in R but no element of R is in conflict with ∆. The
set of active configurations w.r.t. R is denoted by TS(R), where we drop the subscript
if the configuration space is clear from the context.

182

Geometry: C&A 2019 B.3. Expected structural change

In case of the Delaunay triangulation, we set X = P (the input point set). Π consists
of all triangles ∆ = ∆(p, q, r) spanned by three points p, q, r ∈ X∪ {a, b, c}, where a, b, c
are the three artificial far-away points. We set D(∆) := {p, q, r}∩X. The set K(∆) consists
of all points strictly inside the circumcircle of ∆. The resulting configuration space has
dimension 3, and the technical condition that only a constant number of configurations
share the defining set is satisfied as well. In fact, every set of three points defines a
unique configuration (triangle) in this case. A set of two points or one point defines
three triangles (we have to add one or two artificial points which can be done in three
ways). The empty set defines one triangle, the initial triangle consisting of just the three
artificial points.

Furthermore, in the setting of the Delaunay triangulation, a configuration is active
w.r.t. R if it is in DT(R ∪ {a, b, c}), i.e. we have T(R) = DT(R ∪ {a, b, c}).

B.3 Expected structural change

Let us fix a configuration space S = (X,Π,D,K) for the remainder of this lecture. We
can also interpret the incremental construction in S. Given R ⊆ X and s ∈ X \ R, we
want to update T(R) to T(R ∪ {s}). What is the number of new configurations that arise
during this step? For the case of Delaunay triangulations, this is the relevant question
when we want to bound the number of Lawson flips during one update step, since this
number is exactly the number of new configurations minus three.

Here is the general picture.

Definition B.4. For Q ⊆ X and s ∈ Q, deg(s,Q) is defined as the number of configu-
rations of T(Q) that have s in their defining set.

With this, we can say that the number of new configurations in going from T(R) to
T(R∪{s}) is precisely deg(s, R∪{s}), since the new configurations are by definition exactly
the ones that have s in their defining set.

Now the random insertion order comes in for the first time: what is

E(deg(s, R ∪ {s})),

averaged over all insertion orders? In such a random insertion order, R is a random r-
element subset of X (when we are about to insert the (r+1)-st element), and s is a random
element of X \ R. Let Tr be the “random variable” for the set of active configurations
after r insertion steps.

It seems hard to average over all R, but there is a trick: we make a movie of the
randomized incremental construction, and then we watch the movie backwards. What
we see is elements of X being deleted one after another, again in random order. This is
due to the fact that the reverse of a random order is also random. At the point where the
(r+ 1)-st element is being deleted, it is going to be a random element s of the currently

183

Appendix B. The Configuration Space Framework Geometry: C&A 2019

present (r + 1)-element subset Q. For fixed Q, the expected degree of s is simply the
average degree of an element in Q which is

1

r+ 1

∑
s∈Q

deg(s,Q) 6
d

r+ 1
|T(Q)|,

since the sum counts every configuration of T(Q) at most d times. Since Q is a random
(r+ 1)-element subset, we get

E(deg(s, R ∪ {s})) 6
d

r+ 1
tr+1,

where tr+1 is defined as the expected number of active configurations w.r.t. a random
(r+ 1)-element set.

Here is a more formal derivation that does not use the backwards movie view. It
exploits the bijection

(R, s) 7→ (R ∪ {s}︸ ︷︷ ︸
Q

, s)

between pairs (R, s) with |R| = r and s /∈ R and pairs (Q, s) with |Q| = r+ 1 and s ∈ Q.
Let n = |X|.

E(deg(s, R ∪ {s})) =
1(
n
r

) ∑
R⊆X,|R|=r

1

n− r

∑
s∈X\R

deg(s, R ∪ {s})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

1

n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) 1

n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

1

r+ 1

∑
s∈Q

deg(s,Q)

6
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r+ 1
|T(Q)|

=
d

r+ 1
tr+1.

Thus, the expected number of new active configurations in going from Tr to Tr+1 is
bounded by

d

r+ 1
tr+1,

184

Geometry: C&A 2019 B.4. Bounding location costs by conflict counting

where tr+1 is the expected size of Tr+1.
What do we get for Delaunay triangulations? We have d = 3 and tr+1 6 2(r+ 4) − 4

(the maximum number of triangles in a triangulation of r+ 4 points). Hence,

E(deg(s, R ∪ {s})) 6
6r+ 12

r+ 1
≈ 6.

This means that on average, ≈ 3 Lawson flips are done to update DTr (the Delaunay
triangulation after r insertion steps) to DTr+1. Over the whole algorithm, the expected
update cost is thus O(n).

B.4 Bounding location costs by conflict counting

Before we can even update DTr to DTr+1 during the incremental construction of the
Delaunay triangulation, we need to locate the new point s in DTr, meaning that we need
to find the triangle that contains s. We have done this with the history graph: During
the insertion of s we “visit" a sequence of triangles from the history graph, each of which
contains s and was created at some previous iteration k < r.

However, some of these visited triangles are “ephemeral" triangles (recall the discus-
sion at the end of Section 6.2), and they present a problem to the generic analysis we
want to perform. Therefore, we will do a charging scheme, so that all triangles charged
are valid Delaunay triangles.

The charging scheme is as follows: If the visited triangle ∆ is a valid Delaunay triangle
(from some previous iteration), then we simply charge the visit of ∆ during the insertion
of s to the triangle-point pair (∆, s).

If, on the other hand, ∆ is an “ephemeral" triangle, then ∆ was destroyed, together
with some neighbor ∆ ′, by a Lawson flip into another pair ∆ ′′, ∆ ′′′. Note that this
neighbor ∆ ′ was a valid triangle. Thus, in this case we charge the visit of ∆ during the
insertion of s to the pair (∆ ′, s). Observe that s is contained in the circumcircle of ∆ ′,
so s is in conflict with ∆ ′.

This way, we have charged each visit to a triangle in the history graph to a triangle-
point pair of the form (∆, s), such that ∆ is in conflict with s. Furthermore, it is easy to
see that no such pair gets charged more than once.

We define the notion of a conflict in general:

Definition B.5. A conflict is a configuration-element pair (∆, s) where ∆ ∈ Tr for some
r and s ∈ K(∆).

Thus, the running time of the Delaunay algorithm is proportional to the number of
conflicts. We now proceed to derive a bound on the expected number of conflicts in the
generic configuration-space framework.

185

Appendix B. The Configuration Space Framework Geometry: C&A 2019

B.5 Expected number of conflicts

Since every configuration involved in a conflict has been created in some step r (we
include step 0), the total number of conflicts is

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)|,

where T−1 := ∅. T0 consists of constantly many configurations only (namely those where
the set of defining elements is the empty set), each of which is in conflict with at most
all elements; moreover, no conflict is created in step n. Hence,

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)| = O(n) +

n−1∑
r=1

∑
∆∈Tr\Tr−1

|K(∆)|,

and we will bound the latter quantity. Let

K(r) :=
∑

∆∈Tr\Tr−1

|K(∆)|, r = 1, . . . , n− 1.

and k(r) := E(K(r)) the expected number of conflicts created in step r.

Bounding k(r). We know that Tr arises from a random r-element set R. Fixing R, the
backwards movie view tells us that Tr−1 arises from Tr by deleting a random element s
of R. Thus,

k(r) =
1(
n
r

) ∑
R⊆X,|R|=r

1

r

∑
s∈R

∑
∆∈T(R)\T(R\{s})

|K(∆)|

=
1(
n
r

) ∑
R⊆X,|R|=r

1

r

∑
s∈R

∑
∆∈T(R),s∈D(∆)

|K(∆)|

6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
∆∈T(R)

|K(∆)|,

since in the sum over s ∈ R, every configuration is counted at most d times. Since we
can rewrite∑

∆∈T(R)

|K(∆)| =
∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|,

we thus have

k(r) 6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|.

To estimate this further, here is a simple but crucial

186

Geometry: C&A 2019 B.5. Expected number of conflicts

Lemma B.6. The configurations in T(R) that are not in conflict with y ∈ X\R are the
configurations in T(R ∪ {y}) that do not have y in their defining set; in formulas:

|T(R)|− |{∆ ∈ T(R) : y ∈ K(∆)}| = |T(R ∪ {y})|− deg(y, R ∪ {y}).

The proof is a direct consequence of the definitions: every configuration in T(R) not
in conflict with y is by definition still present in T(R ∪ {y}) and still does not have y in
its defining set. And a configuration in T(R ∪ {y}) with y not in its defining set is by
definition already present in T(R) and already there not in conflict with y.

The lemma implies that

k(r) 6 k1(r) − k2(r) + k3(r),

where

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|,

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|,

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y, R ∪ {y}).

Estimating k1(r). This is really simple.

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|

=
1(
n
r

) ∑
R⊆X,|R|=r

d

r
(n− r)|T(R)|

=
d

r
(n− r)tr.

187

Appendix B. The Configuration Space Framework Geometry: C&A 2019

Estimating k2(r). For this, we need to employ our earlier (R, y) 7→ (R ∪ {y}, y) bijection
again.

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d
r
(r+ 1)|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r
(n− r)|T(Q)|

=
d

r
(n− r)tr+1

=
d

r+ 1
(n− (r+ 1))tr+1 +

dn

r(r+ 1)
tr+1

= k1(r+ 1) +
dn

r(r+ 1)
tr+1.

Estimating k3(r). This is similar to k2(r) and in addition uses a fact that we have em-
ployed before:

∑
y∈Q deg(y,Q) 6 d|T(Q)|.

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y, R ∪ {y})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

deg(y,Q)

6
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d2

r
|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d2
r
|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

n− r

r+ 1
· d
2

r
|T(Q)|

=
d2

r(r+ 1)
(n− r)tr+1

=
d2n

r(r+ 1)
tr+1 −

d2

r+ 1
tr+1.

188

Geometry: C&A 2019 B.5. Expected number of conflicts

Summing up. Let us recapitulate: the overall expected number of conflicts is O(n) plus

n−1∑
r=1

k(r) 6
n−1∑
r=1

(k1(r) − k2(r) + k3(r)).

Using our previous estimates, k1(2), . . . , k1(n − 1) are canceled by the first terms of
k2(1), . . . , k2(n − 2). The second term of k2(r) can be combined with the first term of
k3(r), so that we get

n−1∑
r=1

(k1(r) − k2(r) + k3(r)) 6 k1(1) − k1(n)︸ ︷︷ ︸
=0

+n

n−1∑
r=1

d(d− 1)

r(r+ 1)
tr+1 −

n−1∑
r=1

d2

r+ 1
tr+1

6 d(n− 1)t1 + d(d− 1)n

n−1∑
r=1

tr+1

r(r+ 1)

= O

(
d2n

n∑
r=1

tr

r2

)
.

The Delaunay case. We have argued that the expected number of conflicts asymptotically
bounds the expected total location cost over all insertion steps. The previous equation
tells us that this cost is proportional to O(n) plus

O

(
9n

n∑
r=1

2(r+ 3) − 4

r2

)
= O

(
n

n∑
r=1

1

r

)
= O(n logn).

Here,

n∑
r=1

1

r
=: Hn

is the n-th Harmonic Number which is known to be approximately lnn.
By going through the abstract framework of configuration spaces, we have thus ana-

lyzed the randomized incremental construction of the Delaunay triangulation of n points.
According to Section B.3, the expected update cost itself is only O(n). The steps dom-
inating the runtime are the location steps via the history graph. According to Section
B.5, all history graph searches (whose number is proportional to the number of conflicts)
can be performed in expected time O(n logn), and this then also bounds the space
requirements of the algorithm.

Exercise B.7. Design and analyze a sorting algorithm based on randomized incremen-
tal construction in configuration spaces. The input is a set S of numbers, and the
output should be the sorted sequence (in increasing order).

189

Appendix B. The Configuration Space Framework Geometry: C&A 2019

a) Define an appropriate configuration space for the problem! In particular, the
set of active configurations w.r.t. S should represent the desired sorted se-
quence.

b) Provide an efficient implementation of the incremental construction algo-
rithm. “Efficient” means that the runtime of the algorithm is asymptotically
dominated by the number of conflicts.

c) What is the expected number of conflicts (and thus the asymptotic runtime of
your sorting algorithm) for a set S of n numbers?

Questions

63. What is a configuration space? Give a precise definition! What is an active
configuration?

64. How do we get a configuration space from the problem of computing the De-
launay triangulation of a finite point set?

65. How many new active configurations do we get on average when inserting the
r-th element? Provide an answer for configuration spaces in general, and for the
special case of the Delaunay triangulation.

66. What is a conflict? Provide an answer for configuration spaces in general, and
for the special case of the Delaunay triangulation.

67. Explain why counting the expected number of conflicts asymptotically bounds
the cost for the history searches during the randomized incremental construc-
tion of the Delaunay triangulation!

190

Appendix C

Trapezoidal Maps

In this section, we will see another application of randomized incremental construction
in the abstract configuration space framework. At the same time, this will give us an
efficient algorithm for solving the general problem of point location, as well as a faster
algorithm for computing all intersections between a given set of line segments.

C.1 The Trapezoidal Map

To start with, let us introduce the concept of a trapezoidal map.
We are given a set S = {s1, . . . , sn} of line segments in the plane (not necessarily

disjoint). We make several general position assumptions.
We assume that no two segment endpoints and intersection points have the same

x-coordinate. As an exception, we do allow several segments to share an endpoint. We
also assume that no line segment is vertical, that any two line segments intersect in at
most one point (which is a common endpoint, or a proper crossing), and that no three
line segments have a common point. Finally, we assume that si ⊆ [0, 1]2 for all i (which
can be achieved by scaling the coordinates of the segments accordingly).

Definition C.1. The trapezoidal map of S is the partition of [0, 1]2 into vertices, edges,
and faces (called trapezoids), obtained as follows. Every segment endpoint and point
of intersection between segments gets connected by two vertical extensions with the
next feature below and above, where a feature is either another line segment or an
edge of the bounding box [0, 1]2.

Figure C.1 gives an example.
(The general-position assumptions are made only for convenience and simplicity of

the presentation. The various degeneracies can be handled without too much trouble,
though we will not get into the details.)

The trapezoids of the trapezoidal map are “true” trapezoids (quadrangles with two
parallel vertical sides), and triangles (which may be considered as degenerate trapezoids).

191

Appendix C. Trapezoidal Maps Geometry: C&A 2019

Figure C.1: The trapezoidal map of five line segments (depicted in bold)

C.2 Applications of trapezoidal maps

In this chapter we will see two applications of trapezoidal maps (there are others):

1. Point location: Given a set of n segments in the plane, we want to preprocess them
in order to answer point-location queries: given a point p, return the cell (connected
component of the complement of the segments) that contains p (see Figure C.2).
This is a more powerful alternative to Kirkpatrick’s algorithm that handles only
triangulations, and which is treated in Section 7.5. The preprocessing constructs
the trapezoidal map of the segments (Figure C.3) in expected time O(n logn+K),
where K is the number of intersections between the input segments; the query time
will be O(logn) in expectation.

2. Line segment intersection: Given a set of n segments, we will report all segment
intersections in expected time O(n logn + K). This is a faster alternative to the
classical line-sweep algorithm, which takes time O((n+ K) logn).

C.3 Incremental Construction of the Trapezoidal Map

We can construct the trapezoidal map by inserting the segments one by one, in random
order, always maintaining the trapezoidal map of the segments inserted so far. In order
to perform manipulations efficiently, we can represent the current trapezoidal map as a
doubly-connected edge list (see Section 2.2.1), for example.

192

Geometry: C&A 2019 C.3. Incremental Construction of the Trapezoidal Map

1

2

3

4

5

Figure C.2: The general point location problem defined by a set of (possibly inter-
secting) line segments. In this example, the segments partition the plane
into 5 cells.

1

2

3

4

5

Figure C.3: The trapezoidal map is a refinement of the partition of the plane into
cells. For example, cell 3 is a union of five trapezoids.

193

Appendix C. Trapezoidal Maps Geometry: C&A 2019

Suppose that we have already inserted segments s1, . . . , sr−1, and that the resulting
trapezoidal map Tr−1 looks like in Figure C.1. Now we insert segment sr (see Figure C.4).

Figure C.4: A new segment (dashed) is to be inserted

Here are the four steps that we need to do in order to construct Tr.

1. Find the trapezoid �0 of Tr−1 that contains the left endpoint of sr.

2. Trace sr through Tr−1 until the trapezoid containing the right endpoint of sr is
found. To get from the current trapezoid � to the next one, traverse the boundary
of � until the edge is found through which sr leaves �.

3. Split the trapezoids intersected by sr. A trapezoid � may get replaced by

� two new trapezoids (if sr intersects two vertical extensions of �);

� three new trapezoids (if sr intersects one vertical extension of �);

� four new trapezoids (if sr intersects no vertical extension of �).

4. Merge trapezoids by removing parts of vertical extensions that do not belong to Tr
anymore.

Figure C.5 illustrates the Trace and Split steps. s6 intersects 5 trapezoids, and they
are being split into 3, 3, 4, 3, and 3 trapezoids, respectively.

The Merge step is shown in Figure C.6. In the example, there are two vertical edges
that need to be removed (indicated with a cross) because they come from vertical exten-
sions that are cut off by the new segment. In both cases, the two trapezoids to the left
and right of the removed edge are being merged into one trapezoid (drawn shaded).

194

Geometry: C&A 2019 C.3. Incremental Construction of the Trapezoidal Map

Figure C.5: The Trace and Split steps

Figure C.6: The Merge steps

195

Appendix C. Trapezoidal Maps Geometry: C&A 2019

C.4 Using trapezoidal maps for point location

Recall that in the point location problem we want to preprocess a given set S of seg-
ments in order to answer subsequent point-location queries: S partitions the plane into
connected cells and we want to know, given a query point q, to which cell q belongs,
see Figure C.2.

Note that the trapezoidal map of S is a refinement of the partition of the plane into
cells, in the sense that a cell might be partitioned into several trapezoids, but every
trapezoid belongs to a single cell, see Figure C.3. Thus, once the trapezoidal map of S is
constructed, we can easily “glue together" trapezoids that touch along their vertical sides,
obtaining the original cells. Then we can answer point-location queries using the same
routine that performs the Find step (whose implementation will be described below).

C.5 Analysis of the incremental construction

In order to analyze the runtime of the incremental construction, we insert the segments
in random order, and we employ the configuration space framework. We also implement
the Find step in such a way that the analysis boils down to conflict counting, just as for
the Delaunay triangulation.

C.5.1 Defining The Right Configurations

Recall that a configuration space is a quadruple S = (X,Π,D,K), where X is the ground
set, Π is the set of configurations, D is a mapping that assigns to each configuration its
defining elements (“generators”), and K is a mapping that assigns to each configuration
its conflict elements (“killers”).

It seems natural to choose X = S, the set of segments, and to define Π as the set
of all possible trapezoids that could appear in the trapezoidal map of some subset of
segments. Indeed, this satisfies one important property of configuration spaces: for each
configuration, the number of generators is constant.

Lemma C.2. For every trapezoid � in the trapezoidal map of R ⊆ S, there exists a set
D ⊆ R of at most four segments, such that � is in the trapezoidal map of D.

Proof. By our general position assumption, each non-vertical side of � is a subset of a
unique segment in R, and each vertical side of � is induced by a unique (left or right)
endpoint, or by the intersection of two unique segments. In the latter case, one of these
segments also contributes a non-vertical side, and in the former case, we attribute the
endpoint to the “topmost” segment with that (left or right) endpoint. It follows that
there is a set of at most four segments whose trapezoidal map already contains �.

But there is a problem with this definition of configurations. Recall that we can apply
the general configuration space analysis only if

196

Geometry: C&A 2019 C.5. Analysis of the incremental construction

(i) the cost of updating Tr−1 to Tr is proportional to the structural change, the
number of configurations in Tr \ Tr−1; and

(ii) the expected cost of all Find operations during the randomized incremental con-
struction is proportional to the expected number of conflicts. (This is the “conflict
counting” part.)

Here we see that already (i) fails. During the Trace step, we traverse the boundary of
each trapezoid intersected by sr in order to find the next trapezoid. Even if sr intersects
only a small number of trapezoids (so that the structural change is small), the traversals
may take very long. This is due to the fact that a trapezoid can be incident to a large
number of edges. Consider the trapezoid labeled � in Figure C.7. It has many incident
vertical extensions from above. Tracing a segment through such a trapezoid takes time
that we cannot charge to the structural change.

Figure C.7: Trapezoids may have arbitrarily large complexity

To deal with this, we slightly adapt our notion of configuration.

Definition C.3. Let Π be the set of all trapezoids together with at most one incident
vertical edge (“trapezoids with tail”) that appear in the trapezoidal map of some
subset of X = S, see Figure C.8. A trapezoid without any incident vertical edge is
also considered a trapezoid with tail.

Figure C.8: A trapezoid with tail is a trapezoid together with at most one vertical
edge attached to its upper or its lower segment.

As it turns out, we still have constantly many generators.

197

Appendix C. Trapezoidal Maps Geometry: C&A 2019

Lemma C.4. For every trapezoid with tail � in the trapezoidal map of R ⊆ S, there
exists a set D ⊆ R of at most six segments, such that � is in the trapezoidal map
of D.

Proof. We already know from Lemma C.2 that the trapezoid without tail has at most
4 generators. And since the tail is induced by a unique segment endpoint or by the
intersection of a unique pair of segments, the claim follows.

Here is the complete specification of our configuration space S = (X,Π,D,K).

Definition C.5. Let X = S be the set of segments, and Π the set of all trapezoids with
tail. For each trapezoid with tail �, D(�) is the set of at most 6 generators. K(�)
is the set of all segments that intersect � in the interior of the trapezoid, or cut off
some part of the tail, or replace the topmost generator of the left or right side, see
Figure C.9.

Then S = (X,Π,D,K) is a configuration space of dimension at most 6, by Lemma C.4.
The only additional property that we need to check is that D(�) ∩ K(�) = ∅ for all
trapezoids with tail, but this is clear since no generator of � properly intersects the
trapezoid of � or cuts off part of its tail.

Figure C.9: A trapezoid with tail � is in conflict with a segment s (dashed) if s
intersects � in the interior of the trapezoid (left), or cuts off part of the
tail (middle), or is a new topmost segment generating a vertical side.

C.5.2 Update Cost

Now we can argue that the update cost can be bounded by the structural change. We
employ the same trick as for Delaunay triangulations. We prove that the update cost
is in each step r − 1 → r proportional to the number of configurations that are being
destroyed. Over the whole algorithm, we cannot destroy more configurations than we
create, so the bound that we get is also a bound in terms of the overall structural change.

Lemma C.6. In updating Tr−1 to Tr, the steps Trace, Split, and Merge can be performed
in time proportional to the number of trapezoids with tail in Tr−1 \ Tr.

198

Geometry: C&A 2019 C.5. Analysis of the incremental construction

Proof. By definition, the complexity (number of edges) of a trapezoid is proportional
to the number of trapezoids with tail that share this trapezoid. This means, the cost of
traversing the trapezoid can be charged to the trapezoids with tail containing it, and all
of them will be destroyed (this includes the trapezoids with tail that just change their
left or right generator; in the configuration space, this is also a destruction). This takes
care of the Trace step. The Split and Merge steps can be done within the same asymptotic
time bounds since they can be performed by traversing the boundaries of all intersected
trapezoids a constant number of times each. For efficiently doing the manipulations on
the trapezoidal map, we can for example represent it using a doubly-connected edge
list.

We can now employ the general configuration space analysis to bound the expected
structural change throughout the randomized incremental construction; as previously
shown, this asymptotically bounds the expected cost of the Trace, Split, and Merge steps
throughout the algorithm. Let us recall the general bound.

Theorem C.7. Let S = (X,Π,D,K) be a configuration space of fixed dimension with
|X| = n. The expected number of configurations that are created throughout the
algorithm is bounded by

O

(
n∑
r=1

tr

r

)
,

where tr is the expected size of Tr, the expected number of active configurations
after r insertion steps.

C.5.3 The History Graph

Here is how we realize the Find step (as well as the point-location queries for our point-
location application). It is a straightforward history graph approach as for Delaunay
triangulations. Every trapezoid that we ever create is a node in the history graph;
whenever a trapezoid is destroyed, we add outgoing edges to its (at most four) successor
trapezoids. Note that trapezoids are destroyed during the steps Split and Merge. In the
latter step, every destroyed trapezoid has only one successor trapezoid, namely the one
it is merged into. It follows that we can prune the nodes of the “ephemeral” trapezoids
that exist only between the Split and Merge steps. What we get is a history graph of
degree at most 4, such that every non-leaf node corresponds to a trapezoid in Tr−1 \ Tr,
for some r.

C.5.4 Cost of the Find step

We can use the history graph for point location during the Find step. Given a segment
endpoint p, we start from the bounding box (the unique trapezoid with no generators)

199

Appendix C. Trapezoidal Maps Geometry: C&A 2019

that is certain to contain p. Since for every trapezoid in the history graph, its area is
covered by the at most four successor trapezoids, we can simply traverse the history
graph along directed edges until we reach a leaf that contains p. This leaf corresponds to
the trapezoid of the current trapezoidal map containing p. By the outdegree-4-property,
the cost of the traversal is proportional to the length of the path that we traverse.

Here is the crucial observation that allows us to reduce the analysis of the Find step
to “conflict counting”. Note that this is is precisely what we also did for Delaunay
triangulations, except that there, we had to deal explicitly with “ephemeral” triangles.

Recall Definition B.5, according to which a conflict is a pair (�, s) where � is a
trapezoid with tail, contained in some intermediate trapezoidal map, and s ∈ K(�).

Lemma C.8. During a run of the incremental construction algorithm for the trape-
zoidal map, the total number of history graph nodes traversed during all Find steps
is bounded by the number of conflicts during the run.

Proof. Whenever we traverse a node (during insertion of segment sr, say), the node
corresponds to a trapezoid � (which we also consider as a trapezoid with tail) in some
set Ts, s < r, such that p ∈ �, where p is the left endpoint of the segment sr. We can
therefore uniquely identify this edge with the conflict (�, sr). The statement follows.

Now we can use the configuration space analysis that precisely bounds the expected
number of conflicts, and therefore the expected cost of the Find steps over the whole
algorithm. Let us recapitulate the bound.

Theorem C.9. Let S = (X,Π,D,K) be a configuration space of fixed dimension d with
|X| = n. The expected number of conflicts during randomized incremental construc-
tion of Tn is bounded by

O

(
n

n∑
r=1

tr

r2

)
,

where tr is as before the expected size of Tr.

C.5.5 Applying the General Bounds

Let us now apply Theorem C.7 and Theorem C.9 to our concrete situation of trapezoidal
maps. What we obviously need to determine for that is the quantity tr, the expected
number of active configurations after r insertion steps.

Recall that the configurations are the trapezoids with tail that exist at this point.
The first step is easy.

Observation C.10. In every trapezoidal map, the number of trapezoids with tail is
proportional to the number vertices.

200

Geometry: C&A 2019 C.5. Analysis of the incremental construction

Proof. Every trapezoid with tail that actually has a tail can be charged to the vertex of
the trapezoidal map on the “trapezoid side” of the tail. No vertex can be charged twice
in this way. The trapezoids with no tail are exactly the faces of the trapezoidal map,
and since the trapezoidal map is a planar graph, their number is also proportional to the
number vertices.

Using this observation, we have therefore reduced the problem of computing tr to the
problem of computing the expected number of vertices in Tr. To count the latter, we
note that every segment endpoint and every segment intersection generates 3 vertices:
one at the point itself, and two where the vertical extensions hit another feature. Here,
we are sweeping the 4 bounding box vertices under the rug.

Observation C.11. In every trapezoidal map of r segments, the number of vertices is

6r+ 3k,

where k is the number of pairwise intersections between the r segments.

So far, we have not used the fact that we have a random insertion order, but this
comes next.

Lemma C.12. Let K be the total number of pairwise intersections between segments
in S, and let kr be the random variable for the expected number of pairwise in-
tersections between the first r segments inserted during randomized incremental
construction. Then

kr = K

(
n−2
r−2

)(
n
r

) = K
r(r− 1)

n(n− 1)
.

Proof. Let us consider the intersection point of two fixed segments s and s ′. This in-
tersection point appears in Tr if and only both s and s ′ are among the first r segments.
There are

(
n
r

)
ways of choosing the set of r segments (and all choices have the same prob-

ability); since the number of r-element sets containing s and s ′ is
(
n−2
r−2

)
, the probability

for the intersection point to appear is(
n−2
r−2

)(
n
r

) =
r(r− 1)

n(n− 1)
.

Summing this up over all K intersection points, and using linearity of expectation, the
statement follows.

From Observation C.10, Observation C.11 and Lemma C.12, we obtain the following

Corollary C.13. The expected number tr of active configurations after r insertion steps
is

tr = O

(
r+ K

r(r− 1)

n2

)
.

201

Appendix C. Trapezoidal Maps Geometry: C&A 2019

Plugging this into Theorem C.7 and Theorem C.9, we obtain the following final

Theorem C.14. Let S be a set of n segments in the plane, with a total of K pairwise
intersections. The randomized incremental construction computes the trapezoidal
map of S in time

O(n logn+ K).

Proof. We already know that the expected update cost (subsuming steps Trace, Split, and
Merge) is proportional to the expected overall structural change, which by Theorem C.7
is

O

(
n∑
r=1

tr

r

)
= O(n) +O

(
K

n2

n∑
r=1

r

)
= O(n+ K).

We further know that the expected point location cost (subsuming step Find) is pro-
portional to the overall expected number of conflicts which by Theorem C.9 is

O

(
n

n∑
r=1

tr

r2

)
= O(n logn) +O

(
K

n

n∑
r=1

1

)
= O(n logn+ K).

C.6 Analysis of the point location

Finally, we return to the application of trapezoidal maps for point location. We make
precise what we mean by saying that “point-location queries are handled in O(logn)
expected time", and we prove our claim.

Lemma C.15. Let S = {s1, . . . , sn} be any set of n segments. Then there exists a
constant c > 0 such that, with high probability (meaning, with probability tending
to 1 as n→∞), the history graph produced by the random incremental construction
answers every possible point-location query in time at most c logn.

Note that our only randomness assumption is over the random permutation of S
chosen at the beginning of the incremental construction. We do not make any randomness
assumption on the given set of segments.

The proof of Lemma C.15 is by a typical application of Chernoff’s bound followed by
the union bound.

Recall (or please meet) Chernoff’s bound:

Lemma C.16. Let X1, X2, . . . , Xn be independent 0/1 random variables, and let X =
X1 + · · ·+ Xn. Let pi = Pr[Xi = 1], and let µ = E[X] = p1 + · · ·+ pn. Then,

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ
for every 0 < δ < 1;

Pr[X > (1+ δ)µ] <

(
eδ

(1+ δ)1+δ

)µ
for every δ > 0.

202

Geometry: C&A 2019 C.7. The trapezoidal map of a simple polygon

The important thing to note is that e−δ/(1−δ)1−δ as well as eδ/(1+δ)1+δ are strictly
less than 1 for every fixed δ > 0, and decrease with increasing δ.

Now back to the proof of Lemma C.15:

Proof. First note that, even though there are infinitely many possible query points, there
is only a finite number of combinatorially distinct possible queries : If two query points
lie together in every trapezoid (either both inside or both outside), among all possible
trapezoids defined by segments of S, then there is no difference in querying one point
versus querying the other, as far as the algorithm is concerned. Since there are O(n4)
possible trapezoids (recall that each trapezoid is defined by at most four segments), there
are only O(n4) queries we have to consider.

Fix a query point q. We will show that there exists a large enough constant c > 0,
such that only with probability at most O(n−5) does the query on q take more than
c logn steps.

Let s1, s2, . . . , sn be the random order of the segments chosen by the algorithm, and
for 1 6 r 6 n let Tr be the trapezoidal map generated by the first r segments. Note
that for every r, the point q belongs to exactly one trapezoid of Tr. The question is how
many times the trapezoid containing q changes during the insertion of the segments,
since these are exactly the trapezoids of the history graph that will be visited when we
do a point-location query on q.

For 1 6 r 6 n, let Ar be the event that the trapezoid containing q changes from
Tr−1 to Tr. What is the probability of Ar? As in Section B.3, we “run the movie
backwards": To obtain Tr−1 from Tr, we delete a random segment from among s1, . . . , sr;
the probability that the trapezoid containing q in Tr is destroyed is at most 4/r, since
this trapezoid is defined by at most four segments. Thus, Pr[Ar] 6 4/r, independently
of every other As, s 6= r.

For each r let Xr be a random variable equal to 1 ifAr occurs, and equal to 0 otherwise.
We are interested in the quantity X = X1 + · · · + Xr. Then µ = E[X] =

∑n
r=1 Pr[Ar] =

4 lnn + O(1). Applying Chernoff’s bound with δ = 2 (it is just a matter of choosing δ
large enough), we get

Pr[X > (1+ δ)µ] < 0.273µ = O(0.2734 lnn) = O(n−5.19),

so we can take our c to be anything larger than 4(1+ δ) = 12.
Thus, for every fixed query q, the probability of a “bad event" (a permutation that

results in a long query time) is O(n−5). Since there are only O(n4) possible choices for
q, by the union bound the probability of some q having a bad event is O(1/n), which
tends to zero with n.

C.7 The trapezoidal map of a simple polygon

An important special case of the trapezoidal map is obtained when the input segments
form a simple polygon; seee Figure C.10. In this case, we are mostly interested in the

203

Appendix C. Trapezoidal Maps Geometry: C&A 2019

part of the trapezoidal map inside the polygon, since that parts allows us to obtain a
triangulation of the polygon in linear time.

Figure C.10: The trapezoidal map inside a simple polygon

To get a triangulation, we first go through all trapezoids; we know that each trapezoid
must have one polygon vertex on its left and one on its right boundary (due to general
position, there is actually exactly one vertex on each of these two boundaries). Whenever
the segment connecting these two vertices is not an edge of the polygon, we have a
diagonal, and we insert this diagonal. Once we have done this for all trapezoids, it is
easily seen that we have obtained a subdivision of the polygon into x-monotone polygons,
each of which can be triangualated in linear time; see Exercise C.24. This immediately
allows us to improve over the statement of Exercise 3.17.

Corollary C.17. A simple polygon with n vertices can be triangulated in expected time
O(n logn).

Proof. By Theorem C.14, the trapezoidal decomposition induced by the segments of a
simple polygon can be combuted in expected time O(n logn), since there are no intersec-
tions between the segments. Using the above linear-time triangulation algorithm from
the trapezoidal map, the result follows.

The goal of this section is to further improve this bound and show the following
result.

Theorem C.18. Let S = {s1, s2, . . . , sn} be the set of edges of an n-vertex simple polygon,
in counterclockwise order around the polygon. The trapezoidal map induced by S
(and thus also a triangulation of S) can be computed in exptected time O(n log∗ n).

204

Geometry: C&A 2019 C.7. The trapezoidal map of a simple polygon

Informally speaking, the function log∗ n is the number of times we have to iterate the
operation of taking (binary) logarithms, before we get from n down to 1. Formally, we
define

log(h)(n) =
{
n, if h = 0

log(h−1)(logn), otherwise

as the h-times iterated logarithm, and for n > 1 we set

log∗ n = max{h : log(h) n > 1}.

For example, we have

log∗(265536) = 5,

meaning that for all practical purposes, log∗ n 6 5; a bound of O(n log∗ n) is therefore
very close to a linear bound.

History flattening. Recall that the bottleneck in the randomized incremental construction
is the Find step. Using the special structure we have (the segments form a simple polygon
in this order), we can speed up this step. Suppose that at some point during incremental
construction, we have built the trapezoidal map of a subset of r segments, along with
the history graph. We now flatten the history by removing all trapezoids that are not in
Tr, the current trapezoidal map. To allow for point location also in the future, we need
an “entry point” into the flattened history, for every segment not inserted so far (the old
entry point for all segments was the bounding unit square [0, 1]2).

Lemma C.19. Let S be the set of edges of an n-vertex simple polygon, in counterclock-
wise order around the polygon. For R ⊆ S, let T(R) be the trapezoidal map induced
by R. In time proportional to n plus the number of conflicts between trapezoids in
T(R) and segments in S \ R, we can find for all segment s ∈ S a trapezoid of T(R)
that contains an endpoint of s.

Proof. In a trivial manner (and in time O(n)), we do this for the first segment s1 and
its first endpoint p1. Knowing the trapezoid �i containing pi, the first endpoint of si,
we trace the segment si through T(R) until pi+1, its other endpoint and first endpoint
of si+1 is found, along with the trapezoid �i+1 containing it. This is precisely what we
also did in the Trace Step 2 of the incremental construction in Section C.3.

By Lemma C.6 (pretending that we are about to insert si), the cost of tracing si
through T(R) is proportional to the size of T(R) \ T(R ∪ {si}), equivalently, the number
of conflicts between trapezoids in T(R) and si. The statement follows by adding up the
costs for all i.

This is exactly where the special structure of our segments forming a polygon helps.
After locating pi, we can locate the next endpoint pi+1 in time proportional to the

205

Appendix C. Trapezoidal Maps Geometry: C&A 2019

structural change that the insertion of si would cause. We completely avoid the traversal
of old history trapezoids that would be necessary for an efficient location of pi+1 from
scratch.

Next we show what Lemma C.19 gives us in expectation.

Lemma C.20. Let S be the set of edges of an n-vertex simple polygon, in counter-
clockwise order around the polygon, and let Tr be the trapezoidal map obtained
after inserting r segments in random order. In expected time O(n), we can find for
each segment s not inserted so far a trapezoid of Tr containing an endpoint of s.

Proof. According to Lemma C.19, the expected time is bounded by O(n+ `(r)), where

`(r) =
1(
n
r

) ∑
R⊆S,|R|=r

∑
y∈S\R

|{� ∈ T(R) : y ∈ K(�)}|.

This looks very similar to the bound on the quantity k(r) that we have derived in
Section B.5 to count the expected number of conflicts in general configuration spaces:

k(r) 6
1(
n
r

) ∑
R⊆S,|R|=r

d

r

∑
y∈S\R

|{∆ ∈ T(R) : y ∈ K(∆)}|.

Indeed, the difference is only an additional factor of d
r
in the latter. For k(r), we have

then computed the bound

k(r) 6 k1(r)−k2(r)+k3(r) 6
d

r
(n−r)tr−

d

r
(n−r)tr+1+

d2

r(r+ 1)
(n−r)tr+1, (C.21)

where tr is the expected size of Tr. Hence, to get a bound for `(r), we simply have to
cancel d

r
from all terms to obtain

`(r) 6 (n− r)tr − (n− r)tr+1 +
d

r+ 1
(n− r)tr+1 = O(n),

since tr 6 tr+1 = O(r) in the case of nonintersecting line segments.

The faster algorithm. We proceed as in the regular randomized incremental construction,
except that we frequently and at well-chosen points flatten the history. Let us define

N(h) =

⌈
n

log(h) n

⌉
, 0 6 h 6 log∗ n.

We have N(0) = 1,N(log∗ n) 6 n and N(log∗ n + 1) > n. We insert the segments in
random order, but proceed in log∗ n + 1 rounds. In round h = 1, . . . , log∗ n + 1, we do
the following.

206

Geometry: C&A 2019 C.7. The trapezoidal map of a simple polygon

(i) Flatten the history graph by finding for each segment s not inserted so far a trape-
zoid of the current trapezoidal map containing an endpoint of s.

(ii) Insert the segments N(h − 1) up to N(h) − 1 in the random order, as usual, but
starting from the flat history established in (i).

In the last round, we have N(h) − 1 > n, so we stop with segment n in the random
order.

From Lemma C.20, we know that the expected cost of step (i) over all rounds is
bounded by O(n log∗ n) which is our desired overall bound. It remains to prove that
the same bound also deals with step (ii). We do not have to worry about the overall
expected cost of performing the structural changes in the trapezoidal map: this will be
bounded by O(n), using tr = O(r) and Theorem C.7. It remains to analyze the Find
step, and this is where the history flattening leads to a speedup. Adapting Lemma C.8
and its proof accordingly, we obtain the following.

Lemma C.22. During round h of the fast incremental construction algorithm for the
trapezoidal map, the total number of history graph nodes traversed during all Find
steps is bounded by N(h)−N(h−1)1, plus the number of conflicts between trapezoids
that are created during round h, and segments inserted during round h.

Proof. The history in round h only contains trapezoids that are active at some point in
round h. On the one hand, we have the “root nodes” present immediately after flattening
the history, on the other hand the trapezoids that are created during the round. The
term N(h) −N(h− 1) accounts for the traversals of the root nodes during round h. As
in the proof of Lemma C.8, the traversals of other history graph nodes can be charged to
the number of conflicts between trapezoids that are created during round h and segments
inserted during round h.

To count the expected number of conflicts involving trapezoids created in round h, we
go back to the general configuration space framework once more. With kh(r) being the
expected number of conflicts created in step r, restricted to the ones involving segments
inserted in round h, we need to bound

κ(h) =

N(h)−1∑
r=N(h−1)

kh(r).

As in (C.21), we get

kh(r) 6
d

r
(N(h) − r)tr −

d

r
(N(h) − r)tr+1 +

d2

r(r+ 1)
(N(h) − r)tr+1,

1this amounts to O(n) throughout the algorithm and can therefore be neglected

207

Appendix C. Trapezoidal Maps Geometry: C&A 2019

where we have replaced n with N(h), due to the fact that we do not need to consider
segments in later rounds. Then tr = O(r) yields

κ(h) 6 O

N(h)

N(h)−1∑
r=N(h−1)

1

r


= O

(
N(h) log

N(h)

N(h− 1)

)
= O

(
N(h) log

log(h−1) n
log(h) n

)
= O

(
N(h) log(h) n

)
= O(n).

It follows that step (ii) of the fast algorithm also requires expected linear time per
round, and Theorem C.18 follows.

Exercise C.23. a) You are given a set of n pairwise disjoint line segments. Find
an algorithm to answer vertical ray shooting queries in O(logn) time. That is,
preprocess the data such that given a query point q you can report in O(logn)
time which segment is the first above q (or if there are none). Analyze the
running time and the space consumption of the preprocessing.

b) What happens if we allow intersections of the line segments? Explain in a
few words how you have to adapt your solution and how the time and space
complexity would change.

Exercise C.24. Show that an n-vertex x-monotone polygon can be triangulated in time
O(n). (As usual a polygon is given as a list of its vertices in counterclockwise order.
A polygon P is called x-monotone if for all vertical lines `, the intersection ` ∩ P
has at most one component.)

Questions

68. What is the definition of a trapezoidal map?

69. How does the random incremental construction of a trapezoidal map proceed?
What are the main steps to be executed at each iteration?

70. How can trapezoidal maps be used for the point location problem?

71. What is the configuration space framework? Recall Section B.3.

72. What is a naive way of defining a configuration in the case of trapezoids, and
why does it fail?

73. What is a more successful way of defining a configuration? Why do things
work in this case?

208

Geometry: C&A 2019 C.7. The trapezoidal map of a simple polygon

74. What is the history graph, and how is it used to answer point location queries?

75. What is the performance of the random incremental construction of the trape-
zoidal map when used for the point-location problem? Be precise!

76. What probabilistic techniques are used in proving this performance bound?

77. How can you speed up the randomized incremental construction in the case
where the input segments from a simple polygon? Sketch the necessary changes
to the algorithm, and how they affect the analysis.

209

Appendix D

Translational Motion Planning

In a basic instance of motion planning, a robot—modeled as a simple polygon R—moves
by translation amidst a set P of polygonal obstacles. Throughout its motion the robot
must not penetrate any of the obstacles but touching them is allowed. In other words,
the interior of R must be disjoint from the obstacles at any time. Formulated in this
way, we are looking at the motion planning problem in working space (Figure D.1a).

However, often it is useful to look at the problem from a different angle, in so-called
configuration space. Starting point is the observation that the placement of R is fully
determined by a vector ~v = (x, y) ∈ R2 specifying the translation of R with respect to
the origin. Hence, by fixing a reference point in R and considering it the origin, the
robot becomes a point in configuration space (Figure D.1b). The advantage of this point
of view is that it is much easier to think of a point moving around as compared to a
simple polygon moving around.

R

(a) Working Space.

R

(b) Configuration Space.

Figure D.1: Working space and configuration space for a robot R and a collection of
polygonal obstacles.

The next question is: How do obstacles look like in configuration space? For an
obstacle P ∈ P the set C(P) = {~v ∈ R2 | R+~v ∩ P 6= ∅} in configuration space corresponds

210

Geometry: C&A 2019 D.1. Complexity of Minkowski sums

to the obstacle P in the original setting. We write R+~v for theMinkowski sum {~r+~v | ~r ∈
R}. Our interest is focused on the set F = R2 \

⋃
P∈P C(P) of free placements in which

the robot does not intersect any obstacle.

R

P − R

Figure D.2: The Minkowski sum of an obstacle with an inverted robot.

Proposition D.1. C(P) = P − R.

Proof. ~v ∈ P − R ⇐⇒ ~v = ~p − ~r, for some ~p ∈ P and ~r ∈ R. On the other hand,
R+~v ∩ P 6= ∅ ⇐⇒ ~r+~v = ~p, for some ~p ∈ P and ~r ∈ R.

D.1 Complexity of Minkowski sums

Recall that the Minkowski sum of two point sets P,Q ⊆ R is defined as P+Q = {p+ q |

p ∈ P, q ∈ Q}.

Theorem D.2. Let P be an m-vertex polygon and Q an n-vertex polygon. Then:

1. If both P and Q are convex, then their Minkowski sum P+Q has at most m+n
vertices.

2. If P or Q is convex, then P +Q has O(mn) vertices.

3. In any case, P +Q has O(m2n2) vertices.

Proof. The first claim can be proven using the notion of extremal points. If
−→
d = (dx, dy)

is a direction in the plane and P ⊆ R2 is a set of points, then an extremal point of P in
direction

−→
d is a point p = (px, py) ∈ P that maximizes pxdy + pydx:

211

Appendix D. Translational Motion Planning Geometry: C&A 2019

It is easy to see that, if P and Q are convex polygons and r ∈ P +Q is an extremal
point of P + Q in some direction

−→
d , then r is the sum of some extremal points p ∈ P

and q ∈ Q in direction
−→
d . If

−→
d is chosen in “general position”, then p, q, and r will be

vertices of P, Q, and P +Q, respectively.
For every

−→
d in general position, let p−→

d
and q−→

d
be the extremal points in P and Q,

respectively, in direction
−→
d . Then the vertices of P+Q are the precisely sums p−→

d
+q−→

d

over all
−→
d . But as

−→
d varies continuously and makes a full turn, the pair (p−→

d
, q−→

d
) can

change at most m+ n times. This proves the first claim.
For the second claim we need the notion of pseudodiscs. A set P = {P1, . . . , Pn}

of objects in the plane is called a set of pseudodiscs if, for every distinct i and j, the
boundaries of Pi and Pj intersect in at most two points. That is, the objects “behave"
the way discs behave, even though they might not be actual discs.

(Note that it makes no sense to ask whether a single object Pi is a pseudodisc; it only
makes sense to ask whether a set of objects is a set of pseudodiscs.)

Now we need an auxiliary lemma:

Lemma D.3. Let P be a set of convex objects in the plane that are pairwise interior-
disjoint, and let Q be a convex object in the plane. Then the set P +Q = {P +Q |

P ∈ P} is a set of pseudodiscs.

Proof. Suppose for a contradiction that the boundaries of P1 +Q and P2 +Q intersect
four times, for some P1, P2 ∈ P. This means that there are four directions

−→
d 1,
−→
d 2,
−→
d 3,−→

d 4, in this circular order, such that P1 is more extreme than P2 in directions
−→
d 1 and−→

d 3, while P2 is more extreme than P1 in directions
−→
d 2 and

−→
d 4. But such an alternation

cannot happen since P1 and P2 are interior-disjoint.

And we need a second auxiliary lemma:

Lemma D.4. Let P be a set of polygonal pseudodiscs with n vertices in total. Then
their union U =

⋃
P hast at most 2n vertices.

⇒

Proof. We charge every vertex of the union U to a vertex of P in such a way that every
vertex of P receives at most two charges.

Let v be a vertex of U. If v is a vertex of P then we simply charge v to itself. The other
case is where v is the intersection point of two edges e1, e2, belonging to the boundaries
of two distinct polygons P1, P2 ∈ P. In such a case there must be an endpoint w of one
edge e1 or e2 that lies inside the other polygon P2 or P1 (since P is a set of pseudodiscs).
We charge v to w. It is clear that w can receive at most two charges (coming from the

212

Geometry: C&A 2019 D.2. Minkowski sum of two convex polygons

two edges adjacent to w). And every vertex of a polygon in P that is not contained in
any other polygon receives at most one charge.

Now we are ready to prove the second claim of Theorem D.2: Suppose P is convex.
Triangulate Q into n − 2 triangles T1, T2, . . . , Tn−2. Then P + Q =

⋃
i(P + Ti). By the

first claim of our Theorem, each P+ Ti is a convex polygon with at most m+ 3 vertices.
Therefore, by Lemmas D.3 and D.4, their union has at most 2(m+ 3)(n− 2) = O(mn)
vertices.

For the third part of our Theorem, let P and Q be arbitrary polygons. Triangulate
them into triangles S1, . . . , Sm−2 and T1, . . . , Tn−2, respectively. Then P+Q =

⋃
i,j(Si+

Tj). Arguing as before, for every fixed i, the union Xi =
⋃
j(Si + Tj) has at most

12(n − 2) vertices and as many edges. Each vertex in P +Q =
⋃
i Xi is either a vertex

of some Xi, or the intersection of two edges in two different Xi, Xj. There are at most(
12(m−2)(n−2)

2

)
= O(m2n2) vertices of the latter type.

We leave as an exercise to show that each case of Theorem D.2 is tight in the worst
case.

D.2 Minkowski sum of two convex polygons

Let P and Q be convex polygons, given as circular lists of vertices. Construct the
corresponding circular lists of edges EP and EQ. Merge EP and EQ into a single list of
edges E that is sorted by angle. Then E is the list of edges of P +Q:

+ =

Merging of two sorted lists can be done in linear time.

D.3 Constructing a single face

Theorem D.5. Given a set S of n line segments and a point x ∈ R2, the face of A(S)
that contains x can be constructed in O(λ3(n) logn) expected time.

Phrased in terms of translational motion planning this means the following.

Corollary D.6. Consider a simple polygon R with k edges (robot) and a polygonal
environment P that consists of n edges in total. The free space of all positions of R

213

Appendix D. Translational Motion Planning Geometry: C&A 2019

that can be reached by translating it without properly intersecting an obstacle from
P has complexity O(λ3(kn)) and it can be constructed in O(λ3(kn) log(kn)) expected
time.

Below we sketch1 a proof of Theorem D.5 using a randomized incremental construc-
tion, by constructing the trapezoidal map induced by the given set S of segments. As
before, suppose without loss of generality that no two points (intersection points or
endpoints) have the same x-coordinate.

In contrast to the algorithm you know, here we want to construct a single cell only,
the cell that contains x. Whenever a segment closes a face, splitting it into two, we
discard one of the two resulting faces and keep only the one that contains x. To detect
whether a face is closed, use a disjoint-set (union-find) data structure on S. Initially,
all segments are in separate components. The runtime needed for the disjoint-set data
structure is O(nα(n)), which is not a dominating factor in the bound we are heading
for.

Insert the segments of S in order s1, . . . , sn, chosen uniformly at random. Maintain
(as a doubly connected edge list) the trapezoidal decomposition of the face fi, 1 6 i 6 n,
of the arrangement Ai of {s1, . . . , si} that contains x.

As a third data structure, maintain a history dag (directed acyclic graph) on all
trapezoids that appeared at some point during the construction. For each trapezoid,
store the (at most four) segments that define it. The root of this dag corresponds to the
entire plane and has no segments associated to it.

Those trapezoids that are part of the current face fi appear as active leaves in
the history dag. There are two more categories of vertices: Either the trapezoid was
destroyed at some step by a segment crossing it; in this case, it is an interior vertex of
the history dag and stores links to the (at most four) new trapezoids that replaced it. Or
the trapezoid was cut off at some step by a segment that did not cross it but excluded it
from the face containing x; these vertices are called inactive leaves and they will remain
so for the rest of the construction.

Insertion of a segment sr+1 comprises the following steps.

1. Find the cells of the trapezoidal map f∗r of fr that sr+1 intersects by propagating
sr+1 down the history dag.

2. Trace sr+1 through the active cells found in Step 1. For each split, store the new
trapezoids with the old one that is replaced.

Wherever in a split sr+1 connects two segments sj and sk, join the components of
sj and sk in the union find data structure. If they were in the same component
already, then fr is split into two faces. Determine which trapezoids are cut off
from fr+1 at this point by alternately exploring both components using the DCEL
structure. (Start two depth-first searches one each from the two local trapezoids
incident to sr+1. Proceed in both searches alternately until one is finished. Mark

1For more details refer to the book of Agarwal and Sharir [1].

214

Geometry: C&A 2019 D.3. Constructing a single face

all trapezoids as discarded that are in the component that does not contain x.)
In this way, the time spent for the exploration is proportional to the number of
trapezoids discarded and every trapezoid can be discarded at most once.

3. Update the history dag using the information stored during splits. This is done
only after all splits have been processed in order to avoid updating trapezoids that
are discarded in this step.

The analysis is completely analogous to the case where the whole arrangement is
constructed, except for the expected number of trapezoids created during the algorithm.
Recall that any potential trapezoid τ is defined by at most four segments from S. Denote
by tr the expected number of trapezoids created by the algorithm after insertion of
s1, . . . , sr. Then in order for τ to be created at a certain step of the algorithm, one of
these defining segments has to be inserted last. Therefore,

Pr[τ is created by inserting sr] 6
4

r
Pr[τ appears in f∗r]

and

tr =
∑
τ

Pr[τ is created in one of the first r steps]

6
∑
τ

r∑
i=1

4

i
Pr[τ appears in f∗i]

=

r∑
i=1

4

i

∑
τ

Pr[τ appears in f∗i]

Theorem 8.34

6
r∑
i=1

4

i
O(λ3(i))

6
r∑
i=1

4

i
ciα(i) = 4c

r∑
i=1

α(i) 6 4crα(r) = O(λ3(r)) .

Using the notation of the configuration space framework, the expected number of
conflicts is bounded from above by

n−1∑
r=1

(k1 − k2 + k3) 6 16(n− 1) + 12n

n−1∑
r=1

λ3(r+ 1)

r(r+ 1)

6 16(n− 1) + 12

n−1∑
r=1

n

r+ 1
λ3(r+ 1)

1

r

6 16(n− 1) + 12

n−1∑
r=1

λ3(n)

r

= 16(n− 1) + 12 λ3(n)Hn−1
= O(λ3(n) logn) .

215

Appendix D. Translational Motion Planning Geometry: C&A 2019

Exercise D.7. Show that the Minkowski sum of two convex polygons P and Q with m
and n vertices, respectively, is a convex polygon with at most m + n edges. Give
an O(m+ n) time algorithm to construct it.

Exercise D.8. Given an ordered set X = (x1, ..., xn) and a weight function w : X→ R+,
show how to construct in O(n) time a binary search tree on X in which xk has depth
O(1+ log(W/w(xk))), for 1 6 k 6 n, where W =

∑n
i=1w(xi).

Questions

78. What is the configuration space model for (translational) motion planning,
and what does it have to do with arrangements (of line segments)? Explain
the working space/configuration space duality and how to model obstacles in con-
figuration space.

79. What is a Minkowski sum?

80. What is the maximum complexity of the Minkowski sum of two polygons?
What if one of them is convex? If both are convex?

81. How can one compute the Minkowski sum of two convex polygons in linear
time?

82. Can one construct a single face of an arrangement (of line segments) more
efficiently compared to constructing the whole arrangement? Explain the state-
ment of Theorem D.5 and give a rough sketch of the proof.

References

[1] Pankaj K. Agarwal and Micha Sharir, Davenport-Schinzel sequences and their
geometric applications, Cambridge University Press, New York, NY, 1995.

216

Appendix E

Linear Programming

This lecture is about a special type of optimization problems, namely linear programs.
We start with a geometric problem that can directly be formulated as a linear program.

E.1 Linear Separability of Point Sets

Let P ⊆ Rd and Q ⊆ Rd be two finite point sets in d-dimensional space. We want to
know whether there exists a hyperplane that separates P from Q (we allow non-strict
separation, i.e. some points are allowed to be on the hyperplane). Figure E.1 illustrates
the 2-dimensional case.

Figure E.1: Left: there is a separating hyperplane; Right: there is no separating
hyperplane

How can we formalize this problem? A hyperplane is a set of the form

h = {x ∈ Rd : h1x1 + h2x2 + · · ·+ hdxd = h0},

where hi ∈ R, i = 0, . . . , d. For example, a line in the plane has an equation of the form
ax+ by = c.

217

Appendix E. Linear Programming Geometry: C&A 2019

The vector η(h) = (h1, h2, . . . , hd) ∈ Rd is called the normal vector of h. It is
orthogonal to the hyperplane and usually visualized as in Figure E.2(a).

h: ax + by = c

η (h) = (a,b)

(a) The normal vector of a hyperplane

h: ax + by = c

η (h) = (a,b)

h

h

+

−

(b) The two halfspaces of a hyperplane

Figure E.2: The concepts of hyperplane, normal vector, and halfspace

Every hyperplane h defines two closed halfspaces

h+ = {x ∈ Rd : h1x1 + h2x2 + · · ·+ hdxd 6 h0},

h− = {x ∈ Rd : h1x1 + h2x2 + · · ·+ hdxd > h0}.

Each of the two halfpsaces is the region of space “on one side” of h (including h itself).
The normal vector η(h) points into h−, see Figure E.2(b). Now we can formally define
linear separability.

Definition E.1. Two point sets P ⊆ Rd and Q ⊆ Rd are called linearly separable if there
exists a hyperplane h such that P ⊆ h+ and Q ⊆ h−. In formulas, if there exist real
numbers h0, h1, . . . , hd such that

h1p1 + h2p2 + · · ·+ hdpd 6 h0, p ∈ P,
h1q1 + h2q2 + · · ·+ hdqd > h0, q ∈ Q.

As we see from Figure E.1, such h0, h1, . . . , hd may or may not exist. How can we
find out?

E.2 Linear Programming

The problem of testing for linear separability of point sets is a special case of the general
linear programming problem.

Definition E.2. Given n, d ∈ N and real numbers

bi , i = 1, . . . , n,

cj , j = 1, . . . , d,

aij , i = 1, . . . , n, j = 1, . . . , d,

the linear program defined by these numbers is the problem of finding real numbers
x1, x2, . . . , xd such that

218

Geometry: C&A 2019 E.2. Linear Programming

(i)
∑d
j=1 aijxj 6 bi, i = 1, . . . , n, and

(ii)
∑d
j=1 cjxj is as large as possible subject to (i).

Let us get a geometric intuition: each of the n constraints in (i) requires x =
(x1, x2, . . . , xd) ∈ Rd to be in the positive halfspace of some hyperplane. The intersection
of all these halfspaces is the feasible region of the linear program. If it is empty, there
is no solution—the linear program is called infeasible.

Otherwise—and now (ii) enters the picture—we are looking for a feasible solution x
(a point inside the feasible region) that maximizes

∑d
j=1 cjxj. For every possible value

γ of this sum, the feasible solutions for which the sum attains this value are contained
in the hyperplane

{x ∈ Rd :

d∑
j=1

cjxj = γ}

with normal vector c = (c1, . . . , cd). Increasing γ means to shift the hyperplane into
direction c. The highest γ is thus obtained from the hyperplane that is most extreme in
direction c among all hyperplanes that intersect the feasible region, see Figure E.3.

γ = 10

c

γ

γ

γ

γ

= 20

= 30

= 40

= 50

Figure E.3: A linear program: finding the feasible solution in the intersection of five
positive halfspaces that is most extreme in direction c (has highest value
γ =
∑d
j=1 cjxj)

In Figure E.3, we do have an optimal solution (a feasible solution x of highest value∑d
j=1 cjxj), but in general, there might be feasible solutions of arbitrarily high γ-value.

In this case, the linear program is called unbounded, see Figure E.4.
It can be shown that infeasibility and unboundedness are the only obstacles for the

existence of an optimal solution. If the linear program is feasible and bounded, there
exists an optimal solution.

219

Appendix E. Linear Programming Geometry: C&A 2019

γ = 10

c

γ

γ

γ

γ

= 20

= 30

= 40

= 50

Figure E.4: An unbounded linear program

This is not entirely trivial, though. To appreciate the statement, consider the problem
of finding a point (x, y) that (i) satisfies y > ex and (ii) has smallest value of y among all
(x, y) that satisfy (i). This is not a linear program, but in the above sense it is feasible
(there are (x, y) that satisfy (i)) and bounded (y is bounded below from 0 over the set of
feasible solutions). Still, there is no optimal solution, since values of y arbitrarily close
to 0 can be attained but not 0 itself.

Even if a linear program has an optimal solution, it is in general not unique. For
example, if you rotate c in Figure E.3 such that it becomes orthogonal to the top-right
edge of the feasible region, then every point of this edge is an optimal solution. Why
is this called a linear program? Because all constraints are linear inequalities, and the
objective function is a linear function. There is also a reason why it is called a linear
program, but we won’t get into this here (see [3] for more background).

Using vector and matrix notation, a linear program can succinctly be written as
follows.

(LP) maximize c>x
subject to Ax 6 b

Here, c, x ∈ Rd, b ∈ Rn, A ∈ Rn×d, and ·> denotes the transpose operation. The in-
equality “6” is interpreted componentwise. The vector x represents the variables, c
is called the objective function vector, b the right-hand side, and A the constraint
matrix.

To solve a linear programs means to either report that the problem is infeasible or

220

Geometry: C&A 2019 E.3. Minimum-area Enclosing Annulus

unbounded, or to compute an optimal solution x∗. If we can solve linear programs, we
can also decide linear separability of point sets. For this, we check whether the linear
program

maximize 0

subject to h1p1 + h2p2 + · · ·+ hdpd − h0 6 0, p ∈ P,
h1q1 + h2q2 + · · ·+ hdqd − h0 > 0, q ∈ Q.

in the d+ 1 variables h0, h1, h2, . . . , hd and objective function vector c = 0 is feasible or
not. The fact that some inequalities are of the form “>” is no problem, of course, since
we can multiply an inequality by −1 to turn “>” into “6”.

E.3 Minimum-area Enclosing Annulus

Here is another geometric problem that we can write as a linear program, although this is
less obvious. Given a point set P ⊆ R2, find a minimum-area annulus (region between
two concentric circles) that contains P; see Figure E.5 for an illustration.

R

r

c

Figure E.5: A minimum-area annulus containing P

The optimal annulus can be used to test whether the point set P is (approximately)
on a common circle which is the case if the annulus has zero (or small) area.

Let us write this as an optimization problem in the variables c = (c1, c2) ∈ R2 (the
center) and r, R ∈ R (the small and the large radius).

minimize π(R2 − r2)
subject to r2 6 ‖p− c‖2 6 R2, p ∈ P.

221

Appendix E. Linear Programming Geometry: C&A 2019

This neither has a linear objective function nor are the constraints linear inequalities.
But a variable substitution will take care of this. We define new variables

u := r2 − ‖c‖2, (E.3)
v := R2 − ‖c‖2. (E.4)

Omitting the factor π in the objective function does not affect the optimal solution (only
its value), hence we can equivalently work with the objective function v − u = R2 − r2.
The constraint r2 6 ‖p− c‖2 is equivalent to r2 6 ‖p‖2 − 2p>c+ ‖c‖2, or

u+ 2p>c 6 ‖p‖2.

In the same way, ‖p− c‖ 6 R turns out to be equivalent to

v+ 2p>c > ‖p‖2.

This means, we now have a linear program in the variables u, v, c1, c2:

maximize u− v
subject to u+ 2p>c 6 ‖p‖2, p ∈ P

v+ 2p>c > ‖p‖2, p ∈ P.

From optimal values for u, v and c, we can also reconstruct r2 and R2 via (E.3) and (E.4).
It cannot happen that r2 obtained in this way is negative: since we have r2 6 ‖p − c‖2
for all p, we could still increase u (and hence r2 to at least 0), which is a contradicition
to u− v being maximal.

Exercise E.5. a) Prove that the problem of finding a largest disk inside a convex
polygon can be formulated as a linear program! What is the number of vari-
ables in your linear program?

b) Prove that the problem of testing whether a simple polygon is starshaped can
be formulated as a linear program.

Exercise E.6. Given a simple polygon P as a list of vertices along its boundary. De-
scribe a linear time algorithm to decide whether P is star-shaped and—if so—to
construct the so-called kernel of P, that is, the set of all star-points.

E.4 Solving a Linear Program

Linear programming was first studied in the 1930’s -1950’s, and some of its original
applications were of a military nature. In the 1950’s, Dantzig invented the simplex
method for solving linear programs, a method that is fast in practice but is not known
to come with any theoretical guarantees [1].

The computational complexity of solving linear programs was unresolved until 1979
when Leonid Khachiyan discovered a polynomial-time algorithm known as the ellipsoid
method [2]. This result even made it into the New York times.

222

Geometry: C&A 2019 E.4. Solving a Linear Program

From a computational geometry point of view, linear programs with a fixed number
of variables are of particular interest (see our two applications above, with d and 4
variables, respectively, where d may be 2 or 3 in some relavant cases). As was first shown
by Megiddo, such linear programs can be solved in time O(n), where n is the number of
constraints [4]. In the next lecture, we will describe a much simpler randomized O(n)
algorithm due to Seidel [5].

Questions

83. What is a linear program? Give a precise definition! How can you visualize
a linear program? What does it mean that the linear program is infeasible /
unbounded?

84. Show an application of linear programming! Describe a geometric problem that
can be formulated as a linear program, and give that formulation!

References

[1] George B. Dantzig, Linear programming and extensions, Princeton University
Press, Princeton, NJ, 1963.

[2] Leonid G. Khachiyan, Polynomial algorithms in linear programming. U.S.S.R. Com-
put. Math. and Math. Phys, 20, (1980), 53–72.

[3] Jiří Matoušek and Bernd Gärtner, Understanding and using linear programming ,
Universitext, Springer, 2007.

[4] Nimrod Megiddo, Linear programming in linear time when the dimension is fixed. J.
ACM, 31, (1984), 114–127.

[5] Raimund Seidel, Small-dimensional linear programming and convex hulls made easy.
Discrete Comput. Geom., 6, (1991), 423–434.

223

https://doi.org/10.1007/978-3-540-30717-4
http://doi.acm.org/10.1145/2422.322418
https://doi.org/10.1007/BF02574699

Appendix F

A randomized Algorithm for Linear
Programming

Let us recall the setup from last lecture: we have a linear program of the form

(LP) maximize c>x
subject to Ax 6 b,

(F.1)

where c, x ∈ Rd (there are d variables), b ∈ Rn (there are n constraints), and A ∈ Rn×d.
The scenario that we are interested in here is that d is a (small) constant, while n tends
to infinity.

The goal of this lecture is to present a randomized algorithm (due to Seidel [2]) for
solving a linear program whose expected runtime is O(n). The constant behind the
big-O will depend exponentially on d, meaning that this algorithm is practical only for
small values of d.

To prepare the ground, let us first get rid of the unboundedness issue. We add to our
linear program a set of 2d constraints

−M 6 xi 6M, i = 1, 2, . . . d, (F.2)

where M is a symbolic constant assumed to be larger than any real number that it is
compared with. Formally, this can be done by computing with rational functions in M
(quotients of polynomials of degree d in the “variable “M), rather than real numbers.
The original problem is bounded if and only if the solution of the new (and bounded)
problem does not depend on M. This is called the big-M method.

Now let H, |H| = n, denote the set of original constraints. For h ∈ H, we write the
corresponding constraint as ahx 6 bh.

Definition F.3. For Q,R ⊆ H,Q∩R = ∅, let x∗(Q,R) denote the lexicographically largest
optimal solution of the linear program

LP(Q,R) maximize c>x
subject to ahx 6 bh, h ∈ Q

ahx = bh, h ∈ R
−M 6 xi 6M, i = 1, 2, . . . , d.

224

Geometry: C&A 2019 F.1. Helly’s Theorem

If this linear program has no feasible solution, we set x∗(Q,R) =∞.

What does this mean? We delete some of the original constraints (the ones not in
Q∪R, and we require some of the constraints to hold with equality (the ones in R). Since
every linear equation ahx = bh can be simulated by two linear inequalities ahx 6 bh
and ahx > bh, this again assumes the form of a linear program. By the big-M method,
this linear program is bounded, but it may be infeasible. If it is feasible, there may
be several optimal solutions, but choosing the lexicographically largest one leads to a
unique solution x∗(Q,R).

Our algorithm will compute x∗(H, ∅), the lexicographically largest optimal solution
of (F.1) subject to the additional bounding-box constraint (F.2). We also assume that
x∗(H, ∅) 6= ∞, meaning that (F.1) is feasible. At the expense of solving an auxiliary
problem with one extra variable, this may be assumed w.l.o.g. (Exercise).

Exercise F.4. Suppose that you have an algorithm A for solving feasible linear pro-
grams of the form

(LP) maximize c>x
subject to Ax 6 b,

where feasible means that there exists x̃ ∈ Rd such that Ax̃ 6 b. Extend algorithm
A such that it can deal with arbitrary (not necessarily feasible) linear programs of
the above form.

F.1 Helly’s Theorem

A crucial ingredient of the algorithm’s analysis is that the optimal solution x∗(H, ∅) is
already determined by a constant number (at most d) of constraints. More generally,
the following holds.

Lemma F.5. Let Q,R ⊆ H,Q ∩ R = ∅, such that the constraints in R are independent.
This means that the set {x ∈ Rd : ahx = bh, h ∈ R} has dimension d− |R|.

If x∗(Q,R) 6=∞, then there exists S ⊆ Q, |S| 6 d− |R| such that

x∗(S, R) = x∗(Q,R).

The proof uses Helly’s Theorem, a classic result in convexity theory.

Theorem F.6 (Helly’s Theorem [1]). Let C1, . . . Cn be n > d + 1 convex subsets of Rd.
If any d + 1 of the sets have a nonempty common intersection, then the common
intersection of all n sets is nonempty.

Even in R1, this is not entirely obvious. There it says that for every set of intervals
with pairwise nonempty overlap there is one point contained in all the intervals. We will
not prove Helly’s Theorem here but just use it to prove Lemma F.5.

225

Appendix F. A randomized Algorithm for LP Geometry: C&A 2019

Proof. (Lemma F.5) The statement is trivial for |Q| 6 d − |R|, so assume |Q| > d − |R|.
Let

L(R) := {x ∈ Rd : ahx = bh, h ∈ R}

and

B := {x ∈ Rd : −M 6 xi 6M, i = 1, . . . , d}.

For a vector x = (x1, . . . , xd), we define x0 = c>x, and we write x > x ′ if (x0, x1, . . . , xd)
is lexicographically larger than (x ′0, x

′
1, . . . , x

′
d).

Let x∗ = x∗(Q,R) and consider the |Q|+ 1 sets

Ch = {x ∈ Rd : ahx 6 bh} ∩ B ∩ L(R), h ∈ Q

and

C0 = {x ∈ Rd : x > x∗} ∩ B ∩ L(R).

The first observation (that may require a little thinking in case of C0) is that all these
sets are convex. The second observation is that their common intersection is empty.
Indeed, any point in the common intersection would be a feasible solution x̃ of LP(Q,R)
with x̃ > x∗ = x∗(Q,R), a contradiction to x∗(Q,R) being the lexicographically largest
optimal solution of LP(Q,R). The third observation is that since L(R) has dimension
d− |R|, we can after an affine transformation assume that all our |Q|+ 1 convex sets are
actually convex subsets of Rd−|R|.

Then, applying Helly’s Theorem yields a subset of d − |R| + 1 constraints with an
empty common intersection. Since all the Ch do have x∗(Q,R) in common, this set of
constraints must contain C0. This means, there is S ⊆ Q, |S| = d− |R| such that

x ∈ Ch ∀h ∈ S ⇒ x /∈ C0.

In particular, x∗(S, R) ∈ Ch for all h ∈ S, and so it follows that x∗(S, R) 6 x∗ = x∗(Q,R).
But since S ⊆ Q, we also have x∗(S, R) > x∗(Q,R), and x∗(S, R) = x∗(Q,R) follows.

F.2 Convexity, once more

We need a second property of linear programs on top of Lemma F.5; it is also a conse-
quence of convexity of the constraints, but a much simpler one.

Lemma F.7. Let Q,R ⊆ H,Q ∩ R 6= ∅ and x∗(Q,R) 6=∞. Let h ∈ Q. If

ahx
∗(Q \ {h}, R) > bh,

then

x∗(Q,R) = x∗(Q \ {h}, R ∪ {h}).

226

Geometry: C&A 2019 F.3. The Algorithm

Before we prove this, let us get an intuition. The vector x∗(Q \ {h}, R) is the optimal
solution of LP(Q \ {h}, R). And the inequality ahx∗(Q \ {h}, R) > bh means that the
constraint h is violated by this solution. The implication of the lemma is that at the
optimal solution of LP(Q,R), the constraint h must be satisfied with equality in which
case this optimal solution is at the same time the optimal solution of the more restricted
problem LP(Q \ {h}, R ∪ {h}).

Proof. Let us suppose for a contradition that

ahx
∗(Q,R) < bh

and consider the line segment s that connects x∗(Q,R) with x∗(Q \ {h}, R). By the
previous strict inequality, we can make a small step (starting from x∗(Q,R)) along this
line segment without violating the constraint h (Figure F.1). And since both x∗(Q,R)
as well as x∗(Q \ {h}, R) satisfy all other constraints in (Q \ {h}, R), convexity of the
constraints implies that this small step takes us to a feasible solution of LP(Q,R) again.
But this solution is lexicographically larger than x∗(Q,R), since we move towards the
lexicographically larger vector x∗(Q \ {h}, R); this is a contradiction.

x (Q\{h}, R)

x (Q, R)*

*

s

h

Figure F.1: Proof of Lemma F.7

F.3 The Algorithm

The algorithm reduces the computation of x∗(H, ∅) to the computation of x∗(Q,R) for
various sets Q,R, where R is an independent set of constraints. Suppose you want to
compute x∗(Q,R) (assuming that x∗(Q,R) 6=∞). If Q = ∅, this is “easy”, since we have
a constant-size problem, defined by R with |R| 6 d and 2d bounding-box constraints
−M 6 xi 6M.

227

Appendix F. A randomized Algorithm for LP Geometry: C&A 2019

Otherwise, we choose h ∈ Q and recursively compute x∗(Q \ {h}, R) 6= ∞. We then
check whether constraint h is violated by this solution. If not, we are done, since then
x∗(Q \ {h}, R) = x∗(Q,R) (Think about why!). But if h is violated, we can use Lemma
F.7 to conclude that x∗(Q,R) = x∗(Q \ {h}, R ∪ {h}), and we recursively compute the
latter solution. Here is the complete pseudocode.

LP(Q,R):
IF Q = ∅ THEN

RETURN x∗(∅, R)
ELSE

choose h ∈ Q uniformly at random
x∗ := LP(Q \ {h}, R)
IF ahx∗ 6 bh THEN

RETURN x∗

ELSE
RETURN LP(Q \ {h}, R ∪ {h})

END
END

To solve the original problem, we call this algorithm with LP(H, ∅). It is clear that
the algorithm terminates since the first argument Q becomes smaller in every recursive
call. It is also true (Exercise) that every set R that comes up during this algorithm is
indeed an independent set of constraints and in particular has at most d elements. The
correctness of the algorithm then follows from Lemma F.7.

Exercise F.8. Prove that all sets R of constraints that arise during a call to algorithm
LP(H, ∅) are independent, meaning that the set

{x ∈ Rd : ahx = bh, h ∈ R}

of points that satisfy all constraints in R with equality has dimension d− |R|.

F.4 Runtime Analysis

Now we get to the analysis of algorithm LP, and this will also reveal why the random
choice is important.

We will analyze the algorithm in terms of the expected number of violation tests
ahx

∗ 6 bh, and in terms of the expected number of basis computations x∗(∅, R) that
it performs. This is a good measure, since these are the dominating operations of the
algorithm. Moreover, both violation test and basis computation are “cheap” operations
in the sense that they can be performed in time f(d) for some f.

228

Geometry: C&A 2019 F.4. Runtime Analysis

More specifically, a violation test can be performed in time O(d); the time needed
for a basis computation is less clear, since it amounts to solving a small linear program
itself. Let us suppose that it is done by brute-force enumeration of all vertices of the
bounded polyhedron defined by the at most 3d (in)equalities

ahx = bh, h ∈ R
and

−M 6 xi 6M, i = 1, . . . , d.

F.4.1 Violation Tests

Lemma F.9. Let T(n, j) be the maximum expected number of violation tests performed
in a call to LP(Q,R) with |Q| = n and |R| = d− j. For all j = 0, . . . , d,

T(0, j) = 0

T(n, j) 6 T(n− 1, j) + 1+
j

n
T(n− 1, j− 1), n > 0.

Note that in case of j = 0, we may get a negative argument on the right-hand side,
but due to the factor 0/n, this does not matter.

Proof. If |Q| = ∅, there is no violation test. Otherwise, we recursively call LP(Q\ {h}, R)
for some h which requires at most T(n− 1, j) violation tests in expectation. Then there
is one violation test within the call to LP(Q,R) itself, and depending on the outcome, we
perform a second recursive call LP(Q \ {h}, R ∪ {h}) which requires an expected number
of at most T(n − 1, j − 1) violation tests. The crucial fact is that the probability of
performing a second recursive call is at most j/n.

To see this, fix some S ⊆ Q, |S| 6 d − |R| = j such that x∗(Q,R) = x∗(S, R). Such a
set S exists by Lemma F.5. This means, we can remove from Q all constraints except
the ones in S, without changing the solution.

If h 6∈ S, we thus have

x∗(Q,R) = x∗(Q \ {h}, R),

meaning that we have already found x∗(Q,R) after the first recursive call; in particular,
we will then have ahx∗ 6 bh, and there is no second recursive call. Only if h ∈ S (and
this happens with probability |S|/n 6 j/n), there can be a second recursive call.

The following can easily be verified by induction.

Theorem F.10.

T(n, j) 6
j∑
i=0

1

i!
j!n.

Since
∑j
i=0

1
i! 6

∑∞
i=0

1
i! = e, we have T(n, j) = O(j!n). If d > j is constant, this is

O(n).

229

Appendix F. A randomized Algorithm for LP Geometry: C&A 2019

F.4.2 Basis Computations

To count the basis computations, we proceed as in Lemma F.9, except that the “1” now
moves to a different place.

Lemma F.11. Let B(n, j) be the maximum expected number of basis computations
performed in a call to LP(Q,R) with |Q| = n and |R| = d− j. For all j = 0, . . . , d,

B(0, j) = 1

B(n, j) 6 B(n− 1, j) +
j

n
B(n− 1, j− 1), n > 0.

Interestingly, B(n, j) turns out to be much smaller than T(n, j) which is good since a
basic computation is much more expensive than a violation test. Here is the bound that
we get.

Theorem F.12.

B(n, j) 6 (1+Hn)
j = O(logj n),

where Hn is the n-th Harmonic number.

Proof. This is also a simple induction, but let’s do this one since it is not entirely obvious.
The statement holds for n = 0 with the convention that H0 = 0. It also holds for j = 0,
since Lemma F.11 implies B(n, 0) = 1 for all n. For n, j > 0, we inductively obtain

B(n, j) 6 (1+Hn−1)
j +

j

n
(1+Hn−1)

j−1

6
j∑
k=0

(
j

k

)
(1+Hn−1)

j−k(
1

n
)k

= (1+Hn−1 +
1

n
)j = (1+Hn)

j.

The second inequality uses the fact that the terms (1+Hn−1)j and j
n
(1+Hn−1)

j−1 are
the first two terms of the sum in the second line.

F.4.3 The Overall Bound

Putting together Theorems F.10 and F.12 (for j = d, corresponding to the case R = ∅),
we obtain the following

Theorem F.13. A linear program with n constraints in d variables (d a constant) can
be solved in time O(n).

230

Geometry: C&A 2019 F.4. Runtime Analysis

Questions

85. What is Helly’s Theorem? Give a precise statement and outline the application
of the theorem for linear programming (Lemma F.5).

86. Outline an algorithm for solving linear programs ! Sketch the main steps of
the algorithm and the correctness proof! Also explain how one may achieve the
preconditions of feasibility and boundedness.

87. Sketch the analysis of the algorithm! Explain on an intuitive level how ran-
domization helps, and how the recurrence relations for the expected number of
violation tests and basis computations are derived. What is the expected runtime
of the algorithm?

References

[1] Herbert Edelsbrunner, Algorithms in combinatorial geometry , vol. 10 of EATCS
Monographs on Theoretical Computer Science, Springer, 1987.

[2] Raimund Seidel, Small-dimensional linear programming and convex hulls made easy.
Discrete Comput. Geom., 6, (1991), 423–434.

231

https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1007/BF02574699

Appendix G

Smallest Enclosing Balls

This problem is related to the linear programming problem, but in a way it is much
simpler, since a unique optimal solution always exists.

We let P be a set of n points in Rd. We are interested in finding a closed ball of
smallest radius that contains all the points in P, see Figure G.1.

Figure G.1: The smallest enclosing ball of a set of points in the plane

As an “application”, imagine a village that wants to build a firehouse. The location
of the firehouse should be such that the maximum travel time to any house of the village
is as small as possible. If we equate travel time with Euclidean distance, the solution is
to place the firehouse in the center of the smallest ball that covers all houses.

Existence It is not a priori clear that a smallest ball enclosing P exists, but this follows
from standard arguments in calculus. As you usually don’t find this worked out in papers
and textbooks, let us quickly do the argument here.

232

Geometry: C&A 2019

Fix P and consider the continuous function ρ : Rd → R defined by

ρ(c) = max
p∈P
‖p− c‖, c ∈ Rd

Thus, ρ(c) is the radius of the smallest ball centered at c that encloses all points of P.
Let q be any point of P, and consider the closed ball

B = B(q, ρ(q)) := {c ∈ R2 | ‖c− q‖ 6 ρ(q)}.

Since B is compact, the function ρ attains its minimum over B at some point copt, and
we claim that copt is the center of a smallest enclosing ball of P. For this, consider any
center c ∈ R2. If c ∈ B, we have ρ(c) > ρ(copt) by optimality of copt in B, and if c /∈ B,
we get ρ(c) > ‖c− q‖ > ρ(q) > ρ(copt) since q ∈ B. In any case, we get ρ(c) > ρ(copt),
so copt is indeed a best possible center.

Uniqueness Can it be that there are two distinct smallest enclosing balls of P? No, and
to rule this out, we use the concept of convex combinations of balls. Let B = B(c, ρ)
be a closed ball with center c and radius ρ > 0. We define the characteristic function
of B as the function fB : R2 → R given by

fB(x) =
‖x− c‖2
ρ2

, x ∈ R2.

The name characteristic function comes from the following easy

Observation G.1. For x ∈ R2, we have

x ∈ B ⇔ fB(x) 6 1.

Now we are prepared for the convex combination of balls.

Lemma G.2. Let B0 = B(c0, ρ0) and B1 = (c1, ρ1) be two distinct balls with char-
acteristic functions fB0 and fB1. For λ ∈ (0, 1), consider the function fλ defined
by

fλ(x) = (1− λ)fB0(x) + λfB1(x).

Then the following three properties hold.

(i) fλ is the characteristic function of a ball Bλ = (cλ, ρλ). Bλ is called a (proper)
convex combination of B0 and B1, and we simply write

Bλ = (1− λ)B0 + λB1.

(ii) Bλ ⊇ B0 ∩ B1 and ∂Bλ ⊇ ∂B0 ∩ ∂B1.

233

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

(iii) ρλ < max(ρ0, ρ1).

A proof of this lemma requires only elementary calculations and can be found for
example in the PhD thesis of Kaspar Fischer [3]. Here we will just explain what the
lemma means. The family of balls Bλ, λ ∈ (0, 1) “interpolates” between the balls B0
and B1: while we increase λ from 0 to 1, we continuously transform B0 into B1. All
intermediate balls Bλ “go through” the intersection of the original ball boundaries (a
sphere of dimension d− 2). In addition, each intermediate ball contains the intersection
of the original balls. This is property (ii). Property (iii) means that all intermediate
balls are smaller than the larger of B0 and B1. Figure G.2 illustrates the situation.

Bλ

B

B

0

1

Figure G.2: Convex combinations Bλ of two balls B0, B1

Using this lemma, we can easily prove the following

Theorem G.3. Given a finite point set P ⊆ Rd, there exists a unique ball of smallest
radius that contains P. We will denote this ball by B(P).

Proof. If P = {p}, the unique smallest enclosing ball is {p}. Otherwise, any smallest
enclosing ball of P has positive radius ρopt. Assume there are two distinct smallest
enclosing balls B0, B1. By Lemma G.2, the ball

B 1
2
=
1

2
B0 +

1

2
B1

is also an enclosing ball of P (by property (ii)), but it has smaller radius than ρopt (by
property (iii), a contradiction to B0, B1 being smallest enclosing balls.

234

Geometry: C&A 2019 G.1. The trivial algorithm

Bases When you look at the example of Figure G.1, you notice that only three points
are essential for the solution, namely the ones on the boundary of the smallest enclosing
ball. Removing all other points from P would not change the smallest enclosing ball.
Even in cases where more points are on the boundary, it is always possible to find a
subset of at most three points (in the R2 case) with the same smallest enclosing ball.
This is again a consequence of Helly’s Theorem (Theorem 4.9).

Theorem G.4. Let P ⊆ Rd be a finite point set. There is a subset S ⊆ P, |S| 6 d + 1
such that B(P) = B(S).

Proof. If |P| < d + 1, we may choose S = P. Otherwise, let ρopt be the radius of the
smallest enclosing ball B(P) of P = {p1, . . . , pn}. Now define

Ci = {x ∈ Rd : ‖x− pi‖ < ρopt}, i = 1, . . . , n

to be the open ball around pi with radius ρopt. We know that the common intersection
of all the Ci is empty, since any point in the intersection would be a center of an enclosing
ball of P with radius smaller than ρopt. Moreover, the Ci are convex, so Helly’s Theorem
implies that there is a subset S of d + 1 points whose Ci’s also have an empty common
intersection. For this set S, we therefore have no enclosing ball of radius smaller than
ρopt either. Hence, B(S) has radius at leat ρopt; but since S ⊆ P, the radius of B(S) must
also be at most ρopt, and hence it is equal to ρopt. But then B(S) = B(P) follows, since
otherwise, both B(P) and B(S) would be smallest enclosing balls of S, a contradiction.

The previous theorem motivates the following

Definition G.5. Let P ⊆ Rd be a finite point set. A basis of P is an inclusion-minimal
subset S ⊆ P such that B(P) = B(S).

It follows that any basis of P has size at most d + 1. If the points are in general
position (no k + 3 on a common k-dimensional sphere), then P has a unique basis, and
this basis is formed by the set of points on the boundary of B(P).

G.1 The trivial algorithm

Theorem G.4 immediately implies the following (rather inefficient) algorithm for com-
puting B(P): for every subset S ⊆ P, |S| 6 d + 1, compute B(S) (in fixed dimension d,
this can be done in constant time), and return the one with largest radius.

Indeed, this works: for all S ⊆ P, the radius of B(S) is at most that of B(P), and there
must be at least one S, |S| 6 d + 1 (a basis of P) with B(S) = B(P). It follows that the
ball B(T) being returned has the same radius as B(P) and is therefore equal by T ⊆ P.

Assuming that d is fixed, the runtime of this algorithm is

O

(
d+1∑
i=0

(
n

i

))
= O(nd+1).

235

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

If d = 2 (the planar case), the trivial algorithm has runtime O(n3). In the next
section, we discuss an algorithm that is substantially better than the trivial one in any
dimension.

In order to adapt Seidel’s randomized linear programming algorithm to the problem
of computing smallest enclosing balls, we need the following statements.

Exercise G.6. (i) Let P, R ⊆ Rd, P ∩ R = ∅. If there exists a ball that contains P and
has R on the boundary, then there is also a unique smallest such ball which
we denote by B(P, R).

(ii) Let P, R ⊆ Rd, P ∩ R = ∅. If B(P, R) exists and p ∈ P satisfies p /∈ B(P \ {p}, R),
then p is on the boundary of B(P, R), meaning that B(P, R) = B(P \ {p}, R∪ {p}).

Prove these two statements!

G.2 Welzl’s Algorithm

The idea of this algorithm is the following. Given P ⊆ Rd, the algorithm first recursively
computes B(P \ {p}) where p ∈ P is chosen uniformly at random. Then there are two
cases: if p ∈ B(P \ {p}) we have B(P) = B(P \ {p}) (it’s always good to rethink why this
holds) and so we are done already. If p /∈ B(P \ {p}), we still need to work, but the key
fact (that we prove below) is that in this case, p has to be on the boundary of B(P). We
can therefore recursively compute the smallest enclosing ball of P \ {p} that has p on its
boundary, and this is a simpler problem because it intuitively has one degree of freedom
less.

Let us formalize this idea.

Definition G.7. Let P, R ⊆ Rd be disjoint finite point sets. We define B(P, R) as the
smallest ball that contains P and has the points of R on its boundary (if this ball
exists and is unique).

It is not hard to see that existence cannot always be guaranteed; for example if R is
contained in the convex hull of P, there can be no ball that contains P and has even a
single point of R on its boundary. But the following Lemma gives a number of useful
properties.

Lemma G.8. Let P, R ⊆ Rd be disjoint finite point sets, where R is affinely independent.

(i) If there is any ball that contains P and has R on its boundary, then a unique
smallest such ball B(P, R) exists.

(ii) If B(P, R) exists and p /∈ B(P \ {p}, R), then p is on the boundary of B(P, R),
meaning that B(P, R) = B(P \ {p}, R ∪ {p}).

(iii) If B(P, R) exists, there is a subset S ⊆ P of size |S| 6 d + 1 − |R| such that
B(P, R) = B(S, R).

236

Geometry: C&A 2019 G.2. Welzl’s Algorithm

Before we can prove this, we need a helper lemma.

Lemma G.9. Let R ⊆ Rd, |R| > 1 be an affinely independent point set. Then the set

C(R) := {c ∈ Rd | c is the center of a ball that has R on its boundary} (G.10)

is a linear subspace of dimension d+ 1− |R|.

Proof. We have c ∈ C(R) if and only if there exists a number ρ2 such that

ρ2 = ‖c− p‖2 = cTc− 2cTp+ pTp, p ∈ R. (G.11)

Defining µ = ρ2 − cTc, this implies

µ = pTp− 2cTp, p ∈ R. (G.12)

The set of all (c, µ) satisfying the latter |R| equations is a linear subspace L of Rd+1.

Claim. L has dimension d+ 1− |R|.

To see this, let us write (G.12) in matrix form as follows.


p11 p12 · · · p1d 1

p21 p22 · · · p2d 1
...

...
...

...
p|R|1 p|R|2 · · · p|R|d 1



2c1
2c2
...
2cd
µ

 =


pT1p1
pT2p2
. . .

pT|R|p|R|

 , (G.13)

where R = p1, . . . , p|R|. We know from linear algebra that the dimension of the solution
space L is d + 1 minus the rank of the matrix. But this rank is |R| since the rows are
linearly independent by affine independence of R (we leave this easy argument to the
reader, also as a good exercise to recall the definition of affine independence).

It only remains to show that C(R) is also a linear subspace, and of the same dimension
as L. But this holds since the linear function f : C(R)→ L given by

f(c) = (c, pT1p1 − 2c
Tp1)

is a bijection between C(R) and L. The function is clearly injective, but it is also sur-
jective: if (c, µ) ∈ L, we satisfy (G.11) with ρ2 := µ + cTc, meaning that c ∈ C(R)
and

f(c) = (c, pT1p1 − 2c
Tp1) = (c, ‖c− p1‖2 − cTc) = (c, ρ2 − cTc) = (c, µ).

Now we can proceed with the proof of Lemma G.8.

237

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

Proof. The proof of (i) works along the same lines as the one for B(P) in Section G, and
it differs only for R 6= ∅. In this case, choose s ∈ R arbitrarily.

Let C(P, R) be the set of all c ∈ Rd that are centers of balls containing P, and with R
on the boundary. Note that C(P, R) is closed, since it results from intersecting the linear
space C(R) with the closed set

{c ∈ Rd | max
p∈P
‖c− p‖ 6 max

p∈R
‖p− c‖}.

By assumption, the set C(P, R) is nonempty. We define

ρ(c) = ‖s− c‖, c ∈ C(P, R).

Thus, ρ(c) is the radius of the unique ball centered at c that encloses all points of P and
has all points of R on the boundary. To prove that there is some smallest ball containing
P and with R on the boundary, we need to show that the continuous function ρ attains a
minimum over C(P, R). To be able to restrict attention to a closed and bounded (hence
compact) subset of C(P, R), we choose some c0 ∈ C(P, R); then ρ(c0) is certainly an upper
bound for the minimum value, meaning that any c ∈ C(P, R) outside the compact set

{c ∈ C(P, R) | ρ(c) 6 ρ(c0)}

canot be a candidate for the center of a smallest ball. Within this compact set, we do
get a minimum copt, and this is the desired center of a smallest enclosing ball of P that
has R on the boundary.

To prove uniquenes, we invoke again the convex combination of balls: Assuming that
there are two smallest balls B0, B1, then the ball

1

2
B0 +

1

2
B1

is a smaller ball that still contains P and still has R on its boundary (Lemma G.2 (ii)),
a contradiction.

Now for part (ii). Again, convex combinations of balls come to our help. Consider
the two balls B(P, R) and B(P\{p}, R) (note that existence of the former implies existence
of the latter via part (i)). If p is not on the boundary of B(P, R), we have the situation
of Figure G.3.

Then there is some small ε > 0 such that the ball

(1− ε)B(P, R) + εB(P \ {p}, R)

(drawn dashed in Figure G.3) still contains P and has R on the boundary, but has smaller
volume than B(P, R) by Lemma G.2 (iii), a contradiction.

Now we turn to (iii).

238

Geometry: C&A 2019 G.3. The Swiss Algorithm

B(P\{p},R)

B(P,R)

P\{p}

p

R

Figure G.3: Proof of Lemma G.8(ii)

G.3 The Swiss Algorithm

The name of this algorithm comes from the democratic way in which it works. Let us
describe it for the problem of locating the firehouse in a village.

Here is how it is done the Swiss way: a meeting of all n house owners is scheduled,
and every house owner is asked to put a ballot of paper with his/her name on it into a
voting box. Then a constant number r (to be determined later) of ballots is drawn at
random from the voting box, and the selected house owners have the right to negotiate a
location for the firehouse among them. They naturally do this in a selfish way, meaning
that they agree on the center of the smallest enclosing ball D of just their houses as the
proposed location.

The house owners that were not in the selected group now fall into two classes: those
that are happy with the proposal, and those that are not. Let’s say that a house owner
p is happy if and only if his/her house is also covered by D. In other words, p is happy
if and only if the proposal would have been the same with p as an additional member of
the selected group.

Now, the essence of Swiss democracy is to negotiate until everybody is happy, so as
long as there are any unhappy house owners at all, the whole process is repeated. But
in order to give the unhappy house owners a higher chance of influencing the outcome
of the next round, their ballots in the voting box are being doubled before drawing r
ballots again. Thus, there are now two ballots for each unhappy house owner, and one

239

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

for each happy one.
After round k, a house owner that has been unhappy after exactly i of the k rounds

has therefore 2i ballots in the voting box for the next round.
The obvious question is: how many rounds does it take until all house owners are

happy? So far, it is not even clear that the meeting ever ends. But Swiss democracy
is efficient, and we will see that the meeting actually ends after an expected number
of O(logn) rounds. We will do the analysis for general dimension d (just imagine the
village and its houses to lie in Rd).

G.4 The Forever Swiss Algorithm

In the analysis, we want to argue about a fixed round k, but the above algorithm may
never get to this round (for large k, we even strongly hope that it never gets there). But
for the purpose of the analysis, we formally let the algorithm continue even if everybody
is happy after some round (in such a round, no ballots are being doubled).

We call this extension the Forever Swiss Algorithm. A round is called controversial
if it renders at least one house owner unhappy.

Definition G.14.

(i) Let mk be the random variable for the total number of ballots after round k
of the Forever Swiss Algorithm. We set m0 = n, the initial number of ballots.

(ii) Let Ck be the event that the first k rounds in the Forever Swiss Algorithm are
controversial.

A lower bound for E(mk) Let S ⊆ P be a basis of P. Recall that this means that S is
inclusion-minimal with B(S) = B(P).

Observation G.15. After every controversial round, there is an unhappy house owner
in S.

Proof. Let Q be the set of selected house owners in the round. Let us write B > B ′ for
two balls if the radius of B is at least the radius of B ′.

If all house owners in S were happy with the outcome of the round, we would have

B(Q) = B(Q ∪ S) > B(S) = B(P) > B(Q),

where the inequalities follow from the corresponding superset relations. The whole chain
of inequalities would then imply that B(P) and B(Q) have the same radius, meaning that
they must be equal (we had this argument before). But then, nobody would be unhappy
with the round, a contradiction to the current round being controversial.

Since |S| 6 d + 1 by Theorem G.4, we know that after k rounds, some element of S
must have doubled its ballots at least k/(d + 1) times, given that all these rounds were
controversial. This implies the following lower bound on the total number mk of ballots.

240

Geometry: C&A 2019 G.4. The Forever Swiss Algorithm

Lemma G.16.

E(mk) > 2
k/(d+1) prob(Ck), k > 0.

Proof. By the partition theorem of conditional expectation, we have

E(mk) = E(mk | Ck) prob(Ck) + E(mk | Ck) prob(Ck) > 2k/(d+1) prob(Ck).

An upper bound for E(mk) The main step is to show that the expected increase in the
number of ballots from one round to the next is bounded.

Lemma G.17. For all m ∈ N and k > 0,

E(mk | mk−1 = m) 6 m

(
1+

d+ 1

r

)
.

Proof. Since exactly the “unhappy ballots” are being doubled, the expected increase in
the total number of ballots equals the expected number of unhappy ballots, and this
number is

1(
m
r

) ∑
|R|=r

∑
h/∈R

[h is unhappy with R] =
1(
m
r

) ∑
|Q|=r+1

∑
h∈Q

[h is unhappy with Q \ {h}].

(G.18)

Claim: Every (r + 1)-element subset Q contains at most d + 1 ballots such that h is
unhappy with Q \ {h}.

To see the claim, choose a basis S, |S| 6 d + 1, of the ball resulting from drawing
ballots in Q. Only the removal of a ballot h belonging to some house owner p ∈ S can
have the effect that Q and Q \ {h} lead to different balls. Moreover, in order for this to
happen, the ballot h must be the only ballot of the owner p. This means that at most
one ballot h per owner p ∈ S can cause h to be unhappy with Q \ {h}.

We thus get

1(
m
r

) ∑
|R|=r

∑
h/∈R

[h is unhappy with R] 6 (d+1)

(
m
r+1

)(
m
r

) = (d+1)
m− r

r+ 1
6 (d+1)

m

r
. (G.19)

By addingm, we get the new expected total number E(mk | mk−1 = m) of ballots.

From this, we easily get our actual upper bound on E(mk).

Lemma G.20.

E(mk) 6 n

(
1+

d+ 1

r

)k
, k > 0.

241

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

Proof. We use induction, where the case k = 0 follows from m0 = n. For k > 0, the
partition theorem of conditional expectation gives us

E(mk) =
∑
m>0

E(mk | mk−1 = m) prob(mk−1 = m)

6

(
1+

d+ 1

r

)∑
m>0

m prob(mk−1 = m)

=

(
1+

d+ 1

r

)
E(mk−1).

Applying the induction hypothesis to E(mk−1), the lemma follows.

Putting it together Combining Lemmas G.16 and G.20, we know that

2k/(d+1) prob(Ck) 6 n
(
1+

d+ 1

r

)k
,

where Ck is the event that there are k or more controversial rounds.
This inequality gives us a useful upper bound on prob(Ck), because the left-hand

side power grows faster than the right-hand side power as a function of k, given that r
is chosen large enough.

Let us choose r = c(d+ 1)2 for some constant c > log2 e ≈ 1.44. We obtain

prob(Ck) 6 n
(
1+

1

c(d+ 1)

)k
/2k/(d+1) 6 n2k log2 e/(c(d+1))−k/(d+1),

using 1+ x 6 ex = 2x log2 e for all x. This further gives us

prob(Ck) 6 nαk, (G.21)

α = α(d, c) = 2(log2 e−c)/c(d+1) < 1.

This implies the following tail estimate.

Lemma G.22. For any β > 1, the probability that the Forever Swiss Algorithm per-
forms at least dβ log1/α ne controversial rounds is at most

1/nβ−1.

Proof. The probability for at least this many controversial rounds is at most

prob(Cdβ log1/αne) 6 nα
dβ log1/αne 6 nαβ log1/αn = nn−β = 1/nβ−1.

242

Geometry: C&A 2019 G.4. The Forever Swiss Algorithm

In a similar way, we can also bound the expected number of controversial rounds of
the Forever Swiss Algorithm. This also bounds the expected number of rounds of the
Swiss Algorithm, because the latter terminates upon the first non-controversial round.

Theorem G.23. For any fixed dimension d, and with r = dlog2 e(d+1)2e > log2 e(d+1)2,
the Swiss algorithm terminates after an expected number of O(logn) rounds.

Proof. By definition of Ck (and using E(X) =
∑
m>1 prob(X > m) for a random variable

with values in N), the expected number of rounds of the Swiss Algorithm is∑
k>1

prob(Ck).

For any β > 1, we can use (G.21) to bound this by
dβ log1/αne−1∑

k=1

1+ n

∞∑
k=dβ log1/αne

αk = dβ log1/α ne− 1+ n
αdβ log1/αne

1− α

6 β log1/α n+ n
αβ log1/αn

1− α

= β log1/α n+
n−β+1

1− α
= β log1/α n+ o(1).

What does this mean for d = 2? In order to find the location of the firehouse
efficiently (meaning in O(logn) rounds), 13 ballots should be drawn in each round. The
resulting constant of proportionality in the O(logn) bound will be pretty high, though.
To reduce the number of rounds, it may be advisable to choose r somewhat larger.

Since a single round can be performed in time O(n) for fixed d, we can summarize
our findings as follows.

Theorem G.24. Using the Swiss Algorithm, the smallest enclosing ball of a set of n
points in fixed dimension d can be computed in expected time O(n logn).

The Swiss algorithm is a simplification of an algorithm by Clarkson [1, 2].
The bound of the previous Theorem already compares farovably with the bound of

O(nd+1) for the trivial algorithm, see Section G.1, but it does not stop here. We can
even solve the problem in expected linear time O(n), by using an adaptation of Seidel’s
linear programming algorithm [4].

Exercise G.25. Let H be a set with n elements and f : 2H → R a function that maps
subsets of H to real numbers. We say that h ∈ H violates G ⊆ H if f(G∪ {h}) 6= f(G)
(it follows that h /∈ G). We also say that h ∈ H is extreme in G if f(G \ {h}) 6= f(G)
(it follows that h ∈ G).

243

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

Now we define two random variables Vr, Xr :
(
H
r

)
→ R where Vr maps an r-

element set R to the number of elements that violate R, and Xr maps an r-element
set R to the number of extreme elements in R.

Prove the following equality for 0 6 r < n:

E(Vr)

n− r
=
E(Xr+1)

r+ 1
.

Exercise G.26. Imagine instead of doubling the ballots of the unhappy house owners
in the Swiss Algorithm, we would multiply their number by some integer t ∈ N.
Does the analysis of the algorithm improve (i.e., does one get a better bound on
the expected number of rounds, following the same approach)?

Exercise G.27. We have shown that for d = 2 and sample size r = 13, the Swiss
algorithm takes an expected number of O(logn) rounds. Compute the constants,
i.e., find numbers c1, c2 such that the expected number of rounds is always bounded
by c1 log2 n+ c2. Try to make c1 as small as possible.

G.5 Smallest Enclosing Balls in the Manhattan Distance

We can also compute smallest enclosing balls w.r.t. distances other than the Euclidean
distance. In general, if δ : Rd ×Rd → R is a metric, the smallest enclosing ball problem
with respect to δ is the following.

Given P ⊆ Rd, find c ∈ Rd and ρ ∈ R such that

d(c, p) 6 ρ, p ∈ P,

and ρ is as small as possible.
For example, if d(x, y) = ‖x − y‖∞ = maxdi=1 |xi − yi|, the problem is to find a

smallest axis-parallel cube that contains all the points. This can be done in time O(d2n)
by finding the smallest enclosing box. The largest side-length of the box corresponds
to the largest extent of the point set in any of the coordinate directions; to obtain a
smallest enclosing cube, we simply extend the box along the other directions until all
side lengths are equal.

A more interesting case is d(x, y) = ‖x−y‖1 =
∑d
i=1 |xi−yi|. This is the Manhattan

distance. There, the problem can be written as

minimize ρ

subject to
∑d
i=1 |pji − ci| 6 ρ, j = 1, . . . , n.

where pj is the j-th point and pji it’s i-th coordinate Geometrically, the problem is
now that of finding a smallest cross polytope (generalized octahedron) that contains the
points. Algebraically, we can reduce it to a linear program, as follows.

We replace all |pji − ci| by new variables yji and add the additional constraints
yji > pji − ci and yji > ci − pji. The problem now is a linear program.

244

Geometry: C&A 2019 G.5. Smallest Enclosing Balls in the Manhattan Distance

minimize ρ

subject to
∑d
i=1 yji 6 ρ, j = 1, . . . , n

yji > pji − ci, ∀i, j
yji > ci − pji, ∀i, j.

The claim is that the solution to this linear program also solves the original problem.
For this, we need to observe two things: first of all, every optimal solution (c̃, ρ̃) to
the original problem induces a feasible solution to the LP with the same value (simply
set yji := |pji − c̃i|), so the LP solution has value equal to ρ̃ or better. The second
is that every optimal solution ((ỹji)i,j, ρ̃) to the LP induces a feasible solution to the
orginal problem with the same value: by

∑d
i=1 ỹji 6 ρ̃ and ỹji > |pji − ci|, we also have∑d

i=1 |pji − ci| 6 ρ̃. This means, the original problem has value ρ̃ or better. From these
two observations it follows that both problems have the same optimal value ρopt, and
an LP solution of this value yields a smallest enclosing ball of P w.r.t. the Manhatten
distance.

Questions

88. Formulate the Swiss Algorithm for computing smallest enclosing balls, and
discuss its relation with the Forever Swiss algorithm that we employ for the
analysis!

89. The analysis of the Forever Swiss algorithm depends on a lower and an upper
bound for the expected number of ballots after k controversial rounds. Sketch
how these lower and upper bounds can be obtained, and how termination of
the algorithm (with high probability) can be derived from them.

90. What is the expected runtime of the Swiss Algorithm for computing the small-
est enclosing ball of a set of n points in fixed dimension d?

91. How can you compute smallest enclising balls in the Manhattan metric?

References

[1] Kenneth L. Clarkson, A Las Vegas algorithm for linear programming when the di-
mension is small. In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pp.
452–456, 1988.

[2] Kenneth L. Clarkson, Las Vegas algorithms for linear and integer programming when
the dimension is small. J. ACM, 42, (1995), 488–499.

[3] Kaspar Fischer, Smallest enclosing balls of balls. Combinatorial structure and
algorithms . Ph.D. thesis, ETH Zürich, 2005.

245

https://doi.org/10.1109/SFCS.1988.21961
https://doi.org/10.1109/SFCS.1988.21961
http://doi.acm.org/10.1145/201019.201036
http://doi.acm.org/10.1145/201019.201036
https://doi.org/10.3929/ethz-a-005084315
https://doi.org/10.3929/ethz-a-005084315

Appendix G. Smallest Enclosing Balls Geometry: C&A 2019

[4] Emo Welzl, Smallest enclosing disks (balls and ellipsoids). In H. Maurer, ed., New
Results and New Trends in Computer Science, vol. 555 of Lecture Notes Comput.
Sci., pp. 359–370, Springer, 1991.

246

http://doi.acm.org/10.1007/BFb0038202

Appendix H

Epsilon Nets

H.1 Motivation

Here is our scenario for this chapter. We are given a set A of points in Rd and a family
R of ranges r ⊆ Rd, for example the set of all balls, halfspaces, or convex sets in Rd.
A is huge and probably not even known completely; similarly, R may not be accessible
explicitly (in the examples above, it is an uncountable set). Still, we want to learn
something about A and some r ∈ R.

The situation is familiar, definitely, if we don’t insist on the geometric setting. For
example, let A be the set of consumers living in Switzerland, and let r̃ be the subset
of consumers who frequently eat a certain food product, say Lindt chocolate. We have
similar subsets for other food products, and together, they form the family of ranges R.

If we want to learn something about r̃, e.g. the ratio |r̃|

|A|
(the fraction of consumers

frequently eating Lindt chocolate), then we typically sample a subset S of A and see
what portion of S lies in r̃. We want to believe that

|̃r ∩ S|
|S|

approximates
|̃r|

|A|
,

and statistics tells us to what extent this is justified. In fact, consumer surveys are based
on this approach: in our example, S is a sample of consumers who are being asked about
their chocolate preferences. After this, the quantity |̃r ∩ S|/|S| is known and used to
predict the “popularity” |̃r|/|A| of Lindt chocolate among Swiss consumers.

In this chapter, we consider a different kind of approximation. Suppose that we
are interested in the most popular food products in Switzerland, the ones which are
frequently eaten by more than an ε-fraction of all consumers, for some fixed 0 6 ε 6 1.
The goal is to find a small subset N of consumers that “represent” all popular products.
Formally, we want to find a set N ⊆ A such that

for all r:
|r|

|A|
> ε ⇒ r ∩N 6= ∅.

247

Appendix H. Epsilon Nets Geometry: C&A 2019

Such a subset is called an epsilon net. Obviously, N = A is an epsilon net for all ε, but
as already mentioned above, the point here is to have a small set N.

Epsilon nets are very useful in many contexts that we won’t discuss here. But al-
ready in the food consumption example above, it is clear that a small representative
set of consumers is a good thing to have; for example if you quickly need a statement
about a particular popular food product, you know that you will find somebody in your
representative set who knows the product.

The material of this chapter is classic and goes back to Haussler and Welzl [1].

H.2 Range spaces and ε-nets.

Here is the formal framework. Let X be a (possibly infinite) set and R ⊆ 2X. The pair
(X,R) is called a range space1, with X its points and the elements of R its ranges.

Definition H.1. Let (X,R) be a range space. Given A ⊆ X, finite, and ε ∈ R, 0 6 ε 6 1,
a subset N of A is called an ε-net of A (w.r.t. R) if

for all r ∈ R: |r ∩A| > ε|A| ⇒ r ∩N 6= ∅ .

This definition is easy to write down, but it is not so easy to grasp, and this is why we
will go through a couple of examples below. Note that we have a slightly more general
setup here, compared to the motivating Section H.1 where we had X = A.

Examples Typical examples of range spaces in our geometric context are

� (R,H1) with H1 := {(−∞, a] |a ∈ R} ∪ {[a,∞) |a ∈ R} (half-infinite intervals),
and

� (R, I) with I := {[a, b]‖a, b ∈ R, a 6 b} (intervals),

and higher-dimensional counter-parts

� (Rd,Hd) with Hd the closed halfspaces in Rd bounded by hyperplanes,

� (Rd,Bd) with Bd the closed balls in Rd,

� (Rd, Sd) with Sd the d-dimensional simplices in Rd, and

� (Rd,Cd) with Cd the convex sets in Rd.

1In order to avoid confusion: A range space is nothing else but a set system, sometimes also called
hypergraph. It is the context, where we think of X as points and R as ranges in some geometric ambient
space, that suggests the name at hand.

248

Geometry: C&A 2019 H.2. Range spaces and ε-nets.

ε-Nets w.r.t. (R,H1) are particularly simple to obtain. For A ⊆ R, N := {minA,maxA}
is an ε-net for every ε—it is even a 0-net. That is, there are ε-nets of size 2, independent
from |A| and ε.

The situation gets slightly more interesting for the range space (R, I) with intervals.
Given ε and A with elements

a1 < a2 < · · · < an ,

we observe that an ε-net must contain at least one element from any contiguous sequence
{ai, ai+1, . . . , ai+k−1} of k > εn (i.e. k > bεnc + 1) elements in A. In fact, this is a
necessary and sufficient condition for ε-nets w.r.t. intervals. Hence,

{abεnc+1, a2bεnc+2, . . .}

is an ε-net of size2
⌊

n
bεnc+1

⌋
6
⌈
1
ε

⌉
− 1. So while the size of the net depends now on ε,

it is still independent of |A|.

No point in a large range. Let us start with a simple exercise, showing that large ranges
are easy to “catch”. Assume that |r ∩A| > ε|A| for some fixed r and ε, 0 6 ε 6 1.

Now consider the set S obtained by drawing s elements uniformly at random from A

(with replacement). We write
S ∼ As,

indicating that S is chosen uniformly at random from the set As of s-element sequences
over A.

What is the probability that S ∼ As fails to intersect with r, i.e. S ∩ r = ∅? For
p := |r∩A|

|A|
(note p > ε) we get3

prob(S ∩ r = ∅) = (1− p)s < (1− ε)s 6 e−εs .

That is, if s = 1
ε
then this probability is at most e−1 ≈ 0.368, and if we choose s = λ1

ε
,

then this probability decreases exponentially with λ: It is at most e−λ.
For example, if |A| = 10000 and |r∩A| > 100 (r contains more than 1% of the points

in A), then a sample of 300 points is disjoint from r with probability at most e−3 ≈ 0.05.

Smallest enclosing balls. Here is a potential use of this for a geometric problem. Suppose
A is a set of n points in Rd, and we want to compute the smallest enclosing ball of A.
In fact, we are willing to accept some mistake, in that, for some given ε, we want a small
ball that contains all but at most εn points from A. So let’s choose a sample S of λ1

ε

points drawn uniformly (with replacement) from A and compute the smallest enclosing

2The number L of elements in the set is the largest ` such that `(bεnc + 1) 6 n, hence L =
⌊

n
bεnc+1

⌋
.

Since bεnc+ 1 > εn, we have n
bεnc+1 <

1
ε
, and so L < 1

ε
, i.e. L 6

⌈
1
ε

⌉
− 1.

3We make use of the inequality 1+ x 6 ex for all x ∈ R.

249

Appendix H. Epsilon Nets Geometry: C&A 2019

ball B of S. Now let r := Rd \ B, the complement of B in Rd, play the role of the range
in the analysis above. Obviously r ∩ S = ∅, so it is unlikely that |r ∩A| > ε|A|, since—if
so—the probability of S ∩ r = ∅ was at most e−λ.

It is important to understand that this was complete nonsense!

For the probabilistic analysis above we have to first choose r and then draw the
sample—and not, as done in the smallest ball example, first draw the sample and then
choose r based on the sample. That cannot possibly work, since we could always choose
r simply as the complement Rd \ S—then clearly r ∩ S = ∅ and |r ∩ A| > ε|A|, unless
|S| > (1− ε)|A|.

While you hopefully agree on this, you might find the counterargument with r = Rd\S
somewhat artificial, e.g. complements of balls cannot be that selective in ‘extracting’
points from A. It is exactly the purpose of this chapter to understand to what extent
this advocated intuition is justified or not.

H.3 Either almost all is needed or a constant suffices.

Let us reveal the spectrum of possibilities right away, although its proof will have to
await some preparatory steps.

Theorem H.2. Let (X,R) be an infinite range space. Then one of the following two
statements holds.

(1) For every n ∈ N there is a set An ⊆ X with |An| = n such that for every ε,
0 6 ε 6 1, an ε-net must have size at least (1− ε)n.

(2) There is a constant δ depending on (X,R), such that for every finite A ⊆ X
and every ε, 0 < ε 6 1, there is an ε-net of A w.r.t. R of size at most 8δ

ε
log2

4δ
ε

(independent of the size of A).

That is, either we have always ε-nets of size independent of |A|, or we have to do
the trivial thing, namely choosing all but εn points for an ε-net. Obviously, the range
spaces (R,H1) and (R, I) fall into category (2) of the theorem.

For an example for (1), consider (R2,C2). For any n ∈ N, let An be a set of n points
in convex position. For every N ⊆ An there is a range r ∈ C2, namely the convex hull
of An \ N, such that An ∩ r = An \ N (hence, r ∩ N = ∅); see Figure H.1. Therefore,
N ⊆ An cannot be an ε-net of An w.r.t. C2 if |An \N| = n− |N| > εn. Consequently, an
ε-net must contain at least n− εn = (1− ε)n points.4

So what distinguishes (R2,C2) from (R,H1) and (R, I)? And which of the two cases
applies to the many other range spaces we have listed above? Will all of this eventually
tell us something about our attempt of computing a small ball covering all but at most
εn out of n given points? This and more should be clear by the end of this chapter.

4If we were satisfied with any abstract example for category (1), we could have taken (X, 2X) for any
infinite set X.

250

Geometry: C&A 2019 H.4. What makes the difference: VC-dimension

r

N

Figure H.1: If R consists of all convex sets in the plane, then only trivial epsilon nets
exist: for every subset N (black points) of a set An in convex position,
the range r = conv(An \N) fails to intersect N.

H.4 What makes the difference: VC-dimension

Given a range space (X,R) and A ⊆ X, we let

R|A := {r ∩A | r ∈ R} ,

the projection of R to A. Even if R is infinite, R|A is always of size at most 2n if A
is an n-element set. The significance of projections in our context becomes clear if we
rewrite Definition H.1 in terms of projections: N ⊆ A is an ε-net if

for all r ∈ R|A: |r| > ε|A| ⇒ r ∩N 6= ∅.

All of a sudden, the conditions for an ε-net have become discrete, and they only depend
on the finite range space (A, R|A).

Note that, for A a set of n points in convex position in the plane, C2|A = 2A; we
get every subset of A by an intersection with a convex set (this is also the message of
Figure H.1). That is | C2|A | = 2n, the highest possible value.

For A a set of n points in R, we can easily see that5 | I|A | =
(
n+1
2

)
+ 1 = O(n2). A

similar argument shows that | H1|A | = 2n. Now comes the crucial definition.

5Given A as a1 < a2 · · · < an we can choose another n+ 1 points bi, 0 6 i 6 n, such that

b0 < a1 < b1 < a2 < b2 < · · ·bn−1 < an < bn .

Each nonempty intersection of A with an interval can be uniquely written as A∩ [bi, bj] for 0 6 i < j 6 n.
This gives

(
n+1
2

)
plus one for the empty set.

251

Appendix H. Epsilon Nets Geometry: C&A 2019

Definition H.3. Given a range space (X,R), a subset A of X is shattered by R if R|A =
2A. The VC-dimension6 of (X,R), VCdim(X,R), is the cardinality (possibly infinite)
of the largest subset of X that is shattered by R. If no set is shattered (i.e. not even
the empty set which means that R is empty), we set the VC-dimension to −1.

We had just convinced ourselves that (R2,C2) has arbitrarily large sets that can be
shattered. Therefore, VCdim(R2,C2) =∞.

Consider now (R, I). Two points A = {a, b} can be shattered, since for each of the
4 subsets, ∅, {a}, {b}, and {a, b}, of A, there is an interval that generates that subset by
intersection with A. However, for A = {a, b, c} with a < b < c there is no interval that
contains a and c but not b. Hence, VCdim(R, I) = 2.

Exercise H.4. What is VCdim(R,H1)?

Exercise H.5. Prove that if VCdim(X,R) =∞, then we are in case (1) of Theorem H.2,
meaning that only trivial epsilon nets always exist.

The size of projections for finite VC-dimension. Here is the (for our purposes) most impor-
tant consequence of finite VC dimension: there are only polynomially many ranges in
every projection.

Lemma H.6 (Sauer’s Lemma). If (X,R) is a range space of finite VC-dimension at
most δ, then

|R|A| 6 Φδ(n) :=
δ∑
i=0

(
n

i

)
for all A ⊆ X with |A| = n.

Proof. First let us observe that Φ : N0 ∪ {−1}×N0 → N0 is defined by the recurrence7

Φδ(n) =


0 δ = −1,
1 n = 0 and δ > 0, and
Φδ(n− 1) +Φδ−1(n− 1) otherwise.

Second, we note that the VC-dimension cannot increase by passing from (X,R) to a
projection (A,R), R := R|A. Hence, it suffices to consider the finite range space (A,R)—
which is of VC-dimension at most δ—and show |R| 6 Φδ(n) (since Φ is monotone in
δ).

6‘VC’ in honor of the Russian statisticians V.N. Vapnik and A.Ya. Chervonenkis, who discovered the
crucial role of this parameter in the late sixties.

7We recall that the binomial coefficients
(
n
k

)
(with k, n ∈ N0) satisfy the recurrence

(
n
k

)
= 0 if n < k,(

n
0

)
= 1, and

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

252

Geometry: C&A 2019 H.4. What makes the difference: VC-dimension

Now we proceed to a proof by induction of this inequality. If A = ∅ or R = ∅ the
statement is trivial. Otherwise, we consider the two ‘derived’ range spaces for some fixed
x ∈ A:

(A \ {x}, R− x), with R− x := {r \ {x} | r ∈ R}
(note R− x = R|A\{x}) and

(A \ {x}, R(x)), with R(x) := {r ∈ R | x 6∈ r, r ∪ {x} ∈ R}.

Observe that the ranges in R(x) are exactly those ranges in R−x that have two preimages
under the map

R 3 r 7→ r \ {x} ∈ R− x ,

all other ranges have a unique preimage. Consequently,

|R| = |R− x|+ |R(x)| .

We have |R−x| 6 Φδ(n−1). If A ′ ⊆ A\{x} is shattered by R(x), then A ′∪{x} is shattered
by R. Hence, (A \ {x}, R(x)) has VC-dimension at most δ − 1 and |R(x)| 6 Φδ−1(n − 1).
Summing up, it follows that

|R| 6 Φδ(n− 1) +Φδ−1(n− 1) = Φδ(n)

which yields the assertion of the lemma.

In order to see that the bound given in the lemma is tight, consider the range space(
X,

δ⋃
i=0

(
X

i

))
.

Obviously, a set of more than δ elements cannot be shattered (hence, the VC-dimension is
at most δ), and for any finite A ⊆ X, the projection of the ranges to A is

⋃δ
i=0

(
A
δ

)
—with

cardinality Φδ(|A|).
We note that a rough, but for our purposes good enough estimate for Φ is given by8

Φδ(n) 6 n
δ for δ > 2.

We have seen now that the maximum possible size of projections either grows expo-
nentially (2n in case of infinite VC-dimension) or it is bounded by a polynomial nδ in
case of finite VC-dimension δ). The latter is the key to the existence of small ε-nets.
Before shedding light on this, let us better understand when the VC-dimension is finite.

8A better estimate, at least for δ > 3, is given by Φδ(n) <
(
en
δ

)d for all n, d ∈ N, d 6 n.

253

Appendix H. Epsilon Nets Geometry: C&A 2019

H.5 VC-dimension of Geometric Range Spaces

Halfspaces. Let us investigate the VC-dimension of (R2,H2). It is easily seen that three
points in the plane can be shattered by halfplanes, as long a they do not lie on a common
line. Hence, the VC-dimension is at least 3. Now consider 4 points. If three of them lie
on a common line, there is no way to separate the middle point on this line from the
other two by a halfplane. So let us assume that no three points lie on a line. Either
three of them are vertices of a triangle that contains the fourth point—then we cannot
possibly separate the fourth point from the remaining three points by a halfplane. Or the
four points are vertices of a convex quadrilateral—then there is no way of separating the
endpoints from a diagonal from the other two points. Consequently, four points cannot
be shattered, and VCdim(R2,H2) = 3 is established.

The above argument gets tedious in higher dimensions, if it works in a rigorous way
at all. Fortunately, we can employ a classic: By Radon’s Lemma (Theorem 4.8), every
set A of > d + 2 points in Rd can be partitioned into two disjoint subsets A1 and A2
such that conv(A1) ∩ conv(A2) 6= ∅. We get, as an easy implication, that a set A of
at least d + 2 points in Rd cannot be shattered by halfspaces. Indeed, let A1

.∪ A2
be a partition as guaranteed by Radon’s Lemma. Now every halfspace containing A1
must contain at least one point of A2, hence h ∩ A = A1 is impossible for a halfspace
h and thus A is not shattered by Hd. Moreover, it is easily seen that the vertex set of
a d-dimensional simplex (there are d + 1 vertices) can be shattered by halfspaces (each
subset of the vertices forms a face of the simplex and can thus be separated from the
rest by a hyperplane). We summarize that

VCdim(Rd,Hd) = d+ 1 .

Let us now consider the range space (Rd, Ȟd), where Ȟd denotes the set of all closed
halfspaces below non-vertical hyperplanes9–we call these lower halfspaces. Since Ȟd ⊆
Hd, the VC-dimension of (Rd, Ȟd) is at most d + 1, but, in fact, it not too difficult to
show

VCdim(Rd, Ȟd) = d . (H.7)

(Check this claim at least for d = 2.) This range space is a geometric example where the
bound of Sauer’s Lemma is attained. Indeed, for any set A of n points in Rd in general
position10, it can be shown that ∣∣Ȟd∣∣A∣∣ = Φd(n).

9A hyperplane is called non-vertical if it can be specified by a linear equation
∑d
i=1 λixi = λd+1 with

λd 6= 0; see also Section 1.2
10No i + 2 on a common i-flat for i ∈ {1, 2, . . . , d − 1}; in particular, no d + 1 points on a common

hyperplane.

254

Geometry: C&A 2019 H.5. VC-dimension of Geometric Range Spaces

Balls. It is easy to convince oneself that the VC-dimension of disks in the plane is 3:
Three points not on a line can be shattered and four points cannot. Obviously not, if
one of the points is in the convex hull of the other, and for four vertices of a convex
quadrilateral, it is not possible for both diagonals to be separated from the endpoints
of the respective other diagonal by a circle (if you try to draw a picture of this, you see
that you get two circles that intersect four times, which we know is not be the case).

A more rigorous argument which works in all dimensions is looming with the help of
(H.7), if we employ the following transformation called lifting map that we have already
encountered for d = 2 in Section 5.3:

Rd −→ Rd+1

(x1, x2, . . . , xd) = p 7→ `(p) = (x1, x2, . . . , xd, x1
2 + x2

2 + · · ·+ xd2)

(For a geometric interpretation, this is a vertical projection of Rd to the unit paraboloid
xd+1 = x1

2 + x2
2 + · · ·+ xd2 in Rd+1.) The remarkable property of this transformation

is that it maps balls in Rd to halfspaces in Rd+1 in the following sense.
Consider a ball Bd(c, ρ) (c = (c1, c2, . . . , cd) ∈ Rd the center, and ρ ∈ R+ the radius).

A point p = (x1, x2, . . . , xd) lies in this ball if and only if

d∑
i=1

(xi − ci)
2 6 ρ2 ⇔

d∑
i=1

(xi
2 − 2xici + ci

2) 6 ρ2

⇔
(

d∑
i=1

(−2ci)xi

)
+ (x1

2 + x2
2 + · · ·+ xd2) 6 ρ2 −

d∑
i=1

ci
2 ;

this equivalently means that `(p) lies below the non-vertical hyperplane (in Rd+1)

h = h(c, ρ) =

{
x ∈ Rd+1

∣∣∣∣∣
d+1∑
i=1

hixi = hd+2

}
with

(h1, h2, . . . , hd, hd+1, hd+2) =

(
(−2c1), (−2c2), . . . , (−2cd), 1, ρ

2 −

d∑
i=1

ci
2

)
.

It follows that a set A ⊆ Rd is shattered by Bd (the set of closed balls in Rd) if and only
if `(A) := {`(p) |p ∈ A} is shattered by Ȟd+1. Assuming (H.7), this readily yields

VCdim(Rd,Bd) = d+ 1 .

The lifting map we have employed here is a special case of a more general paradigm
called linearization which maps non-linear conditions to linear conditions in higher
dimensions.

We have clarified the VC-dimension for all examples of range spaces that we have
listed in Section H.2, except for the one involving simplices. The following exercise
should help to provide an answer.

255

Appendix H. Epsilon Nets Geometry: C&A 2019

Exercise H.8. For a range space (X,R) of VC-dimension d and a number k ∈ N,
consider the range space (X, I) where ranges form intersections of at most k ranges
from R, that is, I = {

⋂k
i=1 Ri |∀i : Ri ∈ R}. Give an upper bound for the VC-

dimension of (X, I).

H.6 Small ε-Nets, an Easy Warm-up Version

Let us prove a first bound on the size of ε-nets when the VC-dimension is finite.

Theorem H.9. Let n ∈ N and (X,R) be a range space of VC-dimension d > 2. Then
for any A ⊆ X with |A| = n and any ε ∈ R+ there exists an ε-net N of A w.r.t. R
with |N| 6 dd lnn

ε
e.

Proof. We restrict our attention to the finite projected range space (A,R), R := R|A, for
which we know |R| 6 Φd(n) 6 nd. It suffices to show that there is a set N ⊆ A with
|N| 6 d lnn

ε
which contains an element from each r ∈ Rε := {r ∈ R : |r| > εn}.

Suppose, for some s ∈ N (to be determined), we let N ∼ As. For each r ∈ Rε, we
know that prob(r ∩N = ∅) < (1− ε)s 6 e−εs. Therefore,

prob(N is not ε-net of A) = prob(∃r ∈ Rε : r ∩N = ∅)
= prob(

∨
r∈Rε

(r ∩N = ∅))

6
∑
r∈Rε

prob(r ∩N = ∅) < |Rε|e
−εs 6 nde−εs .

It follows that if s is chosen so that nde−εs 6 1, then prob(N is not ε-net of A) < 1 and
there remains a positive probability for the event that N is an ε-net of A. Now

nde−εs 6 1 ⇔ nd 6 eεs ⇔ d lnn 6 εs.

That is, for s = dd lnn
ε
e, the probability of obtaining an ε-net is positive, and therefore

an ε-net of that size has to exist.11

If we are willing to invest a little more in the size of the random sample N, then the
probability of being an ε-net grows dramatically. More specifically, for s = dd lnn+λ

ε
e, we

have
nde−εs 6 nde−d lnn−λ = e−λ ,

and, therefore, a sample of that size is an ε-net with probability at least 1− e−λ.

11This line of argument “If an experiment produces a certain object with positive probability, then it has
to exist”, as trivial as it is, admittedly needs some time to digest. It is called The Probabilistic Method,
and was used and developed to an amazing extent by the famous Hungarian mathematician Paul Erdős
starting in the thirties.

256

Geometry: C&A 2019 H.7. Even Smaller ε-Nets

We realize that we need d lnn
ε

sample size to compensate for the (at most) nd subsets
of A which we have to hit—it suffices to ensure positive success probability. The extra
λ
ε
allows us to boost the success probability.
Also note that if A were shattered by R, then R = 2A and |R| = 2n. Using this bound

instead of nd in the proof above would require us to choose s to be roughly n ln2
ε

, a
useless estimate which even exceeds n unless ε is large (at least ln 2 ≈ 0.69).

Smallest enclosing balls, again It is time to rehabilitate ourselves a bit concerning the
suggested procedure for computing a small ball containing all but at most ε|A| points
from an n-point set A ⊆ Rd.

Let (Rd,Bdcompl) be the range space whose ranges consist of all complements of closed
balls in Rd. This has the same VC-dimension d+1 as (Rd,Bd). Indeed, if A∩r = A ′ for
a ball r, then A∩ (Rd \ r) = A \A ′, so A is shattered by Bd if and only if A is shattered
by Bd

compl.
Hence, if we choose a sample N of size s = d (d+1) lnn+λ

ε
e then, with probability

at least 1 − e−λ this is an ε-net for A w.r.t. Bdcompl. Let us quickly recall what this
means: whenever the complement of some ball B has empty intersection with N, then
this complement contains at most an ε|A| points of A. As a consequence, the smallest
ball enclosing N has at most ε|A| points of A outside, with probability at least 1− e−λ.

H.7 Even Smaller ε-Nets

We still need to prove part 2 of Theorem H.2, the existence of ε-nets whose size is
independent of A. For this, we employ the same strategy as in the previous section, i.e.
we sample elements from A uniformly at random, with replacement; a refined analysis
will show that—compared to the bound of Theorem H.9—much less elements suffice.
Here is the main technical lemma.

Lemma H.10. Let (X,R) be a range space of VC-dimension δ > 2, and let A ⊆ X be
finite. If x ∼ Am for m > 8/ε, then for the set Nx of elements occurring in x, we
have

prob(Nx is not an ε-net for A w.r.t. R) 6 2Φδ(2m)2−
εm
2 .

Before we prove this, let us derive the bound of Theorem H.2 from it. Let us recall
the statement.

Theorem H.2 (2). Let (X,R) be a range space with VC-dimension δ > 2. Then for every
finite A ⊆ X and every ε, 0 < ε 6 1, there is an ε-net of A w.r.t. R of size at most
8δ
ε
log2

4δ
ε

(independent of the size of A).

We want that
2Φδ(2m)2−

εm
2 < 1,

257

Appendix H. Epsilon Nets Geometry: C&A 2019

since then we know that an ε-net of size m exists. We have

2Φδ(2m)2−
εm
2 < 1

⇐ 2(2m)δ < 2
εm
2

⇔ 1+ δ log2(2m) <
εm

2

⇐ 2δ log2m <
εm

2

⇔ 4δ

ε
<

m

log2m
.

In the second to last implication, we have used δ > 2 and m > 8. Now we claim that
the latter inequality is satisfied for m = 24δ

ε
log2

4δ
ε
. To see this, we need that m

log2m
> α

for m = 2α log2 α and α = 4δ
ε
. We compute

m

log2m
=

2α log2 α
log2(2α log2 α)

=
2α log2 α

1+ log2 α+ log2 log2 α
= α

2 log2 α
1+ log2 α+ log2 log2 α

> α

as long as

log2 α > 1+ log2 log2 α⇔ log2 α > log2 2 log2 α⇔ α > 2 log2 α,

which holds as long as α > 2, and this is satisfied for α = 4δ
ε
.

Proof. (Lemma H.10) By going to the projection (A, R|A), we may assume that X = A,
so we have a finite range space over n elements (see Section H.4). Fix ε ∈ R+. For
t ∈ N, a range r ∈ R and x ∈ At (a t-vector of elements from A), we define

count(r, x) = |{i ∈ [t] : xi ∈ r}|.

Now we consider two events over A2m. The first one is the bad event of not getting
an ε-net when we choose m elements at random from A (plus another m elements that
we ignore for the moment):

Q :=
{
xy ∈ A2m

∣∣ x ∈ Am, y ∈ Am, ∃r ∈ Rε : count(r, x) = 0} .
Recall that Rε = {r ∈ R : |r| > εn}. Thus prob(Q) = prob(Nx is not ε-net) which is
exactly what we want to bound.

The second auxiliary event looks somewhat weird at first:

J :=
{
xy ∈ A2m

∣∣∣ x ∈ Am, y ∈ Am, ∃r ∈ Rε : count(r, x) = 0 and count(r, y) >
εm

2

}
.

This event satisfies J ⊆ Q and contains pairs of sequences x and y with somewhat
contradicting properties for some r. While the first part x fails to contain any element
from r, the second part y has many elements from r.

258

Geometry: C&A 2019 H.7. Even Smaller ε-Nets

Claim 1. prob(J) 6 prob(Q) 6 2prob(J).

The first inequality is a consequence of J ⊆ Q. To prove the second inequality, we
show that

prob(J)
prob(Q)

=
prob(J ∩Q)

prob(Q)
= prob(J | Q) >

1

2
.

So suppose that xy ∈ Q, with “witness” r, meaning that r ∈ Rε and count(r, x) = 0.
We show that xy ∈ J with probability at least 1/2, for every fixed such x and y chosen
randomly from Am. This entails the claim.

The random variable count(r, y) is a sum of m independent Bernoulli experiments
with success probability p := |r|/n > ε (thus expectation p and variance p(1 − p)).
Using linearity of expectation and variance (the latter requires independence of the ex-
periments), we get

E(count(r, y)) = pm,

Var(count(r, y)) = p(1− p)m.

Now we use Chebyshew’s inequality12 to bound the probability of the “bad” event that
count(r, y) < εm

2
. We have

prob
(
count(r, y) <

εm

2

)
6 prob

(
count(r, y) <

pm

2

)
6 prob

(
|count(r, y) − E(count(r, y))| >

pm

2

)
= prob

(
|count(r, y) − E(count(r, y))| >

1

2(1− p)
Var(count(r, y))

)
6

4(1− p)2

p(1− p)m
=
4(1− p)

pm
6

4

pm
<

4

εm
6
1

2
,

since m > 8
ε
. Hence

prob
(
count(r, y) >

εm

2

)
>
1

2
,

and the claim is proved.
Now the weird event J reveals its significance: we can nicely bound its probability.

The idea is this: We enumerate A as A = {a1, a2, . . . , an} and let the type of z ∈ At be
the n-sequence

type(z) = (count(a1, z), count(a2, z), . . . , count(an, z)).

For example, the type of z = (1, 2, 4, 2, 2, 4) w.r.t. A = {1, 2, 3, 4} is type(z) = (1, 3, 0, 2).
Now fix an arbitrary type τ. We will bound the conditional probability prob(xy ∈ J |

xy has type τ), and the value that we get is independent of τ. It follows that the same
value also bounds prob(J).

12prob(|X− E(X)| > kVar(X)) 6 1
k2Var(X)

259

Appendix H. Epsilon Nets Geometry: C&A 2019

Claim 2. prob(xy ∈ J | xy has type τ) 6 Φδ(2m)2−εm/2.

To analyze the probability in question, we need to sample z = xy uniformly at random
from all sequences of type τ. This can be done as follows: take an arbitrary sequence z ′

of type τ, and then apply a random permutation π ∈ S2m to obtain z = π(z ′), meaning
that

zi = z
′
π(i) for all i.

Why does this work? First of all, π preserves the type, and it is easy to see that all
sequences z of type τ can be obtained in this way. Now we simply count the number of
permutations that map z ′ to a fixed z and see that this number only depends on τ, so
it is the same for all z. Indeed, for every element ai ∈ A, there are τi! many ways of
mapping the ai’s in z ′ to the ai’s in z. The number of permutations that map z ′ to z is
therefore given by

n∏
i=1

τi!.

By these considerations,

prob(xy ∈ J | xy has type τ) = prob(π(z ′) ∈ J).
To estimate this, we let S be the set of distinct elements in z ′ (this is also a function of
the type τ). Since (X,R) has VC-dimension δ, we know from Lemma H.6 that | R|S | 6
Φδ(2m), so at most that many different subsets T of S can be obtained by intersections
with ranges r ∈ R, and in particular with ranges r ∈ Rε.

Now we look at some fixed such T , consider a permutation π and write π(z ′) = xy.
We call T a witness for π if no element of x is in T , but at least εm/2 elements of y are
in T . According to this definition,

π(z ′) ∈ J ⇔ π has some witness T ⊆ S.
By the union bound,

prob(π(z ′) ∈ J) = prob(∃T : T is a witness for π) 6
∑
T

prob(T is a witness for π).

Suppose that z ′ contains ` > εm/2 occurences of elements of T (for smaller `, T
cannot be a witness). In order for π(z ′) = xy to be in J, no element of T can appear in
the first half x, but all ` occurrences of elements from T must fall into the second half y.
Therefore, the probability of T being a witness for a random permutation is(

m
`

)(
2m
`

) =
m(m− 1) · · · (m− `+ 1)

2m(2m− 1) · · · (2m− `+ 1)
6 2−` 6 2−

εm
2 ,

since among all the
(
2m
`

)
equally likely ways in which π distributes the ` occurences in

z, exactly the
(
m
`

)
equally likely ways of putting them into y are good.13 Summing up

13This argument can be made more formal by explicitly counting the permutations that map {1, 2, . . . , `}
to the set {1, 2, . . . ,m}. We leave this to the reader.

260

Geometry: C&A 2019 H.7. Even Smaller ε-Nets

over all at most Φδ(2m) sets T , we get

prob(xy ∈ J | xy has type τ) 6 Φδ(2m)2−
εm
2 ,

for all τ.
The proof is finished by combining the two claims:

prob(Nx is not ε-net) = prob(Q) 6 2prob(J) 6 2Φδ(2m)2−
εm
2 .

Questions

92. What is a range space? Give a definition and a few examples.

93. What is an epsilon net? Provide a formal definition, and explain in words what
it means.

94. What is the VC dimension of a range space Give a definition, and compute the
VC dimension of a few example range spaces.

95. Which range spaces always have small epsilon nets (and how small), and
which ones don’t? Explain Theorem H.2.

96. How can you compute small epsilon nets? Explain the general idea, and give
the analysis behind the weaker bound of Theorem H.9.

97. How can you compute smaller epsilon nets? Sketch the main steps of the proof
of the stronger bound of Theorem H.2.

References

[1] David Haussler and Emo Welzl, Epsilon-nets and simplex range queries. Discrete
Comput. Geom., 2, (1987), 127–151.

261

https://doi.org/10.1007/BF02187876

	Fundamentals
	Models of Computation
	Basic Geometric Objects
	Graphs

	Plane Embeddings
	Drawings, Embeddings and Planarity
	Graph Representations
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Combinatorial Embeddings

	Unique Embeddings
	Triangulating a Plane Graph
	Compact Straight-Line Drawings
	Canonical Orderings
	The Shift-Algorithm
	Remarks and Open Problems

	Polygons
	Classes of Polygons
	Polygon Triangulation
	The Art Gallery Problem
	Optimal Guarding

	Convex Hull
	Convexity
	Classic Theorems for Convex Sets
	Planar Convex Hull
	Trivial algorithms
	Jarvis' Wrap
	Graham Scan (Successive Local Repair)
	Lower Bound
	Chan's Algorithm

	Delaunay Triangulations
	The Empty Circle Property
	The Lawson Flip algorithm
	Termination of the Lawson Flip Algorithm: The Lifting Map
	Correctness of the Lawson Flip Algorithm
	The Delaunay Graph
	Every Delaunay Triangulation Maximizes the Smallest Angle
	Constrained Triangulations

	Delaunay Triangulation: Incremental Construction
	Incremental construction
	The History Graph
	Analysis of the algorithm

	Voronoi Diagrams
	Post Office Problem
	Voronoi Diagram
	Duality
	Lifting Map
	Planar Point Location
	Kirkpatrick's Hierarchy

	Line Arrangements
	Arrangements
	Construction
	Zone Theorem
	The Power of Duality
	Rotation Systems—Sorting all Angular Sequences
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing lower envelopes
	Complexity of a single face

	Counting
	Introduction
	Embracing k-Sets in the Plane
	Adding a Dimension
	The Upper Bound
	Faster Counting—Another Vector
	Characterizing All Possibilities
	Some Add-Ons

	Crossings
	Line Sweep
	Interval Intersections
	Segment Intersections
	Improvements
	Algebraic degree of geometric primitives
	Red-Blue Intersections

	The Configuration Space Framework
	The Delaunay triangulation — an abstract view
	Configuration Spaces
	Expected structural change
	Bounding location costs by conflict counting
	Expected number of conflicts

	Trapezoidal Maps
	The Trapezoidal Map
	Applications of trapezoidal maps
	Incremental Construction of the Trapezoidal Map
	Using trapezoidal maps for point location
	Analysis of the incremental construction
	Defining The Right Configurations
	Update Cost
	The History Graph
	Cost of the Find step
	Applying the General Bounds

	Analysis of the point location
	The trapezoidal map of a simple polygon

	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face

	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

	Smallest Enclosing Balls
	The trivial algorithm
	Welzl's Algorithm
	The Swiss Algorithm
	The Forever Swiss Algorithm
	Smallest Enclosing Balls in the Manhattan Distance

	Epsilon Nets
	Motivation
	Range spaces and -nets.
	Either almost all is needed or a constant suffices.
	What makes the difference: VC-dimension
	VC-dimension of Geometric Range Spaces
	Small -Nets, an Easy Warm-up Version
	Even Smaller -Nets

