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Appendix H

Epsilon Nets

H.1 Motivation

Here is our scenario for this chapter. We are given a set A of points in Rd and a family
R of ranges r ⊆ Rd, for example the set of all balls, halfspaces, or convex sets in Rd.
A is huge and probably not even known completely; similarly, R may not be accessible
explicitly (in the examples above, it is an uncountable set). Still, we want to learn
something about A and some r ∈ R.

The situation is familiar, definitely, if we don’t insist on the geometric setting. For
example, let A be the set of consumers living in Switzerland, and let r̃ be the subset
of consumers who frequently eat a certain food product, say Lindt chocolate. We have
similar subsets for other food products, and together, they form the family of ranges R.

If we want to learn something about r̃, e.g. the ratio |r̃|

|A|
(the fraction of consumers

frequently eating Lindt chocolate), then we typically sample a subset S of A and see
what portion of S lies in r̃. We want to believe that

|̃r ∩ S|
|S|

approximates
|̃r|

|A|
,

and statistics tells us to what extent this is justified. In fact, consumer surveys are based
on this approach: in our example, S is a sample of consumers who are being asked about
their chocolate preferences. After this, the quantity |̃r ∩ S|/|S| is known and used to
predict the “popularity” |̃r|/|A| of Lindt chocolate among Swiss consumers.

In this chapter, we consider a different kind of approximation. Suppose that we
are interested in the most popular food products in Switzerland, the ones which are
frequently eaten by more than an ε-fraction of all consumers, for some fixed 0 6 ε 6 1.
The goal is to find a small subset N of consumers that “represent” all popular products.
Formally, we want to find a set N ⊆ A such that

for all r:
|r|

|A|
> ε ⇒ r ∩N 6= ∅.
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Such a subset is called an epsilon net. Obviously, N = A is an epsilon net for all ε, but
as already mentioned above, the point here is to have a small set N.

Epsilon nets are very useful in many contexts that we won’t discuss here. But al-
ready in the food consumption example above, it is clear that a small representative
set of consumers is a good thing to have; for example if you quickly need a statement
about a particular popular food product, you know that you will find somebody in your
representative set who knows the product.

The material of this chapter is classic and goes back to Haussler and Welzl [1].

H.2 Range spaces and ε-nets.

Here is the formal framework. Let X be a (possibly infinite) set and R ⊆ 2X. The pair
(X,R) is called a range space1, with X its points and the elements of R its ranges.

Definition H.1. Let (X,R) be a range space. Given A ⊆ X, finite, and ε ∈ R, 0 6 ε 6 1,
a subset N of A is called an ε-net of A (w.r.t. R) if

for all r ∈ R: |r ∩A| > ε|A| ⇒ r ∩N 6= ∅ .

This definition is easy to write down, but it is not so easy to grasp, and this is why we
will go through a couple of examples below. Note that we have a slightly more general
setup here, compared to the motivating Section H.1 where we had X = A.

Examples Typical examples of range spaces in our geometric context are

� (R,H1) with H1 := {(−∞, a] |a ∈ R} ∪ {[a,∞) |a ∈ R} (half-infinite intervals),
and

� (R, I) with I := {[a, b]‖a, b ∈ R, a 6 b} (intervals),

and higher-dimensional counter-parts

� (Rd,Hd) with Hd the closed halfspaces in Rd bounded by hyperplanes,

� (Rd,Bd) with Bd the closed balls in Rd,

� (Rd, Sd) with Sd the d-dimensional simplices in Rd, and

� (Rd,Cd) with Cd the convex sets in Rd.

1In order to avoid confusion: A range space is nothing else but a set system, sometimes also called
hypergraph. It is the context, where we think of X as points and R as ranges in some geometric ambient
space, that suggests the name at hand.
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ε-Nets w.r.t. (R,H1) are particularly simple to obtain. For A ⊆ R, N := {minA,maxA}
is an ε-net for every ε—it is even a 0-net. That is, there are ε-nets of size 2, independent
from |A| and ε.

The situation gets slightly more interesting for the range space (R, I) with intervals.
Given ε and A with elements

a1 < a2 < · · · < an ,

we observe that an ε-net must contain at least one element from any contiguous sequence
{ai, ai+1, . . . , ai+k−1} of k > εn (i.e. k > bεnc + 1) elements in A. In fact, this is a
necessary and sufficient condition for ε-nets w.r.t. intervals. Hence,

{abεnc+1, a2bεnc+2, . . .}

is an ε-net of size2
⌊

n
bεnc+1

⌋
6
⌈
1
ε

⌉
− 1. So while the size of the net depends now on ε,

it is still independent of |A|.

No point in a large range. Let us start with a simple exercise, showing that large ranges
are easy to “catch”. Assume that |r ∩A| > ε|A| for some fixed r and ε, 0 6 ε 6 1.

Now consider the set S obtained by drawing s elements uniformly at random from A

(with replacement). We write
S ∼ As,

indicating that S is chosen uniformly at random from the set As of s-element sequences
over A.

What is the probability that S ∼ As fails to intersect with r, i.e. S ∩ r = ∅? For
p := |r∩A|

|A|
(note p > ε) we get3

prob(S ∩ r = ∅) = (1− p)s < (1− ε)s 6 e−εs .

That is, if s = 1
ε
then this probability is at most e−1 ≈ 0.368, and if we choose s = λ1

ε
,

then this probability decreases exponentially with λ: It is at most e−λ.
For example, if |A| = 10000 and |r∩A| > 100 (r contains more than 1% of the points

in A), then a sample of 300 points is disjoint from r with probability at most e−3 ≈ 0.05.

Smallest enclosing balls. Here is a potential use of this for a geometric problem. Suppose
A is a set of n points in Rd, and we want to compute the smallest enclosing ball of A.
In fact, we are willing to accept some mistake, in that, for some given ε, we want a small
ball that contains all but at most εn points from A. So let’s choose a sample S of λ1

ε

points drawn uniformly (with replacement) from A and compute the smallest enclosing

2The number L of elements in the set is the largest ` such that `(bεnc + 1) 6 n, hence L =
⌊

n
bεnc+1

⌋
.

Since bεnc+ 1 > εn, we have n
bεnc+1 <

1
ε
, and so L < 1

ε
, i.e. L 6

⌈
1
ε

⌉
− 1.

3We make use of the inequality 1+ x 6 ex for all x ∈ R.
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ball B of S. Now let r := Rd \ B, the complement of B in Rd, play the role of the range
in the analysis above. Obviously r ∩ S = ∅, so it is unlikely that |r ∩A| > ε|A|, since—if
so—the probability of S ∩ r = ∅ was at most e−λ.

It is important to understand that this was complete nonsense!

For the probabilistic analysis above we have to first choose r and then draw the
sample—and not, as done in the smallest ball example, first draw the sample and then
choose r based on the sample. That cannot possibly work, since we could always choose
r simply as the complement Rd \ S—then clearly r ∩ S = ∅ and |r ∩ A| > ε|A|, unless
|S| > (1− ε)|A|.

While you hopefully agree on this, you might find the counterargument with r = Rd\S
somewhat artificial, e.g. complements of balls cannot be that selective in ‘extracting’
points from A. It is exactly the purpose of this chapter to understand to what extent
this advocated intuition is justified or not.

H.3 Either almost all is needed or a constant suffices.

Let us reveal the spectrum of possibilities right away, although its proof will have to
await some preparatory steps.

Theorem H.2. Let (X,R) be an infinite range space. Then one of the following two
statements holds.

(1) For every n ∈ N there is a set An ⊆ X with |An| = n such that for every ε,
0 6 ε 6 1, an ε-net must have size at least (1− ε)n.

(2) There is a constant δ depending on (X,R), such that for every finite A ⊆ X
and every ε, 0 < ε 6 1, there is an ε-net of A w.r.t. R of size at most 8δ

ε
log2

4δ
ε

(independent of the size of A).

That is, either we have always ε-nets of size independent of |A|, or we have to do
the trivial thing, namely choosing all but εn points for an ε-net. Obviously, the range
spaces (R,H1) and (R, I) fall into category (2) of the theorem.

For an example for (1), consider (R2,C2). For any n ∈ N, let An be a set of n points
in convex position. For every N ⊆ An there is a range r ∈ C2, namely the convex hull
of An \ N, such that An ∩ r = An \ N (hence, r ∩ N = ∅); see Figure H.1. Therefore,
N ⊆ An cannot be an ε-net of An w.r.t. C2 if |An \N| = n− |N| > εn. Consequently, an
ε-net must contain at least n− εn = (1− ε)n points.4

So what distinguishes (R2,C2) from (R,H1) and (R, I)? And which of the two cases
applies to the many other range spaces we have listed above? Will all of this eventually
tell us something about our attempt of computing a small ball covering all but at most
εn out of n given points? This and more should be clear by the end of this chapter.

4If we were satisfied with any abstract example for category (1), we could have taken (X, 2X) for any
infinite set X.
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r

N

Figure H.1: If R consists of all convex sets in the plane, then only trivial epsilon nets
exist: for every subset N (black points) of a set An in convex position,
the range r = conv(An \N) fails to intersect N.

H.4 What makes the difference: VC-dimension

Given a range space (X,R) and A ⊆ X, we let

R|A := {r ∩A | r ∈ R} ,

the projection of R to A. Even if R is infinite, R|A is always of size at most 2n if A
is an n-element set. The significance of projections in our context becomes clear if we
rewrite Definition H.1 in terms of projections: N ⊆ A is an ε-net if

for all r ∈ R|A: |r| > ε|A| ⇒ r ∩N 6= ∅.

All of a sudden, the conditions for an ε-net have become discrete, and they only depend
on the finite range space (A, R|A).

Note that, for A a set of n points in convex position in the plane, C2|A = 2A; we
get every subset of A by an intersection with a convex set (this is also the message of
Figure H.1). That is | C2|A | = 2n, the highest possible value.

For A a set of n points in R, we can easily see that5 | I|A | =
(
n+1
2

)
+ 1 = O(n2). A

similar argument shows that | H1|A | = 2n. Now comes the crucial definition.

5Given A as a1 < a2 · · · < an we can choose another n+ 1 points bi, 0 6 i 6 n, such that

b0 < a1 < b1 < a2 < b2 < · · ·bn−1 < an < bn .

Each nonempty intersection of A with an interval can be uniquely written as A∩ [bi, bj] for 0 6 i < j 6 n.
This gives

(
n+1
2

)
plus one for the empty set.
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Definition H.3. Given a range space (X,R), a subset A of X is shattered by R if R|A =
2A. The VC-dimension6 of (X,R), VCdim(X,R), is the cardinality (possibly infinite)
of the largest subset of X that is shattered by R. If no set is shattered (i.e. not even
the empty set which means that R is empty), we set the VC-dimension to −1.

We had just convinced ourselves that (R2,C2) has arbitrarily large sets that can be
shattered. Therefore, VCdim(R2,C2) =∞.

Consider now (R, I). Two points A = {a, b} can be shattered, since for each of the
4 subsets, ∅, {a}, {b}, and {a, b}, of A, there is an interval that generates that subset by
intersection with A. However, for A = {a, b, c} with a < b < c there is no interval that
contains a and c but not b. Hence, VCdim(R, I) = 2.

Exercise H.4. What is VCdim(R,H1)?

Exercise H.5. Prove that if VCdim(X,R) =∞, then we are in case (1) of Theorem H.2,
meaning that only trivial epsilon nets always exist.

The size of projections for finite VC-dimension. Here is the (for our purposes) most impor-
tant consequence of finite VC dimension: there are only polynomially many ranges in
every projection.

Lemma H.6 (Sauer’s Lemma). If (X,R) is a range space of finite VC-dimension at
most δ, then

|R|A| 6 Φδ(n) :=
δ∑
i=0

(
n

i

)
for all A ⊆ X with |A| = n.

Proof. First let us observe that Φ : N0 ∪ {−1}×N0 → N0 is defined by the recurrence7

Φδ(n) =


0 δ = −1,
1 n = 0 and δ > 0, and
Φδ(n− 1) +Φδ−1(n− 1) otherwise.

Second, we note that the VC-dimension cannot increase by passing from (X,R) to a
projection (A,R), R := R|A. Hence, it suffices to consider the finite range space (A,R)—
which is of VC-dimension at most δ—and show |R| 6 Φδ(n) (since Φ is monotone in
δ).

6‘VC’ in honor of the Russian statisticians V.N. Vapnik and A.Ya. Chervonenkis, who discovered the
crucial role of this parameter in the late sixties.

7We recall that the binomial coefficients
(
n
k

)
(with k, n ∈ N0) satisfy the recurrence

(
n
k

)
= 0 if n < k,(

n
0

)
= 1, and

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.
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Now we proceed to a proof by induction of this inequality. If A = ∅ or R = ∅ the
statement is trivial. Otherwise, we consider the two ‘derived’ range spaces for some fixed
x ∈ A:

(A \ {x}, R− x), with R− x := {r \ {x} | r ∈ R}

(note R− x = R|A\{x}) and

(A \ {x}, R(x)), with R(x) := {r ∈ R | x 6∈ r, r ∪ {x} ∈ R}.

Observe that the ranges in R(x) are exactly those ranges in R−x that have two preimages
under the map

R 3 r 7→ r \ {x} ∈ R− x ,

all other ranges have a unique preimage. Consequently,

|R| = |R− x|+ |R(x)| .

We have |R−x| 6 Φδ(n−1). If A ′ ⊆ A\{x} is shattered by R(x), then A ′∪{x} is shattered
by R. Hence, (A \ {x}, R(x)) has VC-dimension at most δ − 1 and |R(x)| 6 Φδ−1(n − 1).
Summing up, it follows that

|R| 6 Φδ(n− 1) +Φδ−1(n− 1) = Φδ(n)

which yields the assertion of the lemma.

In order to see that the bound given in the lemma is tight, consider the range space(
X,

δ⋃
i=0

(
X

i

))
.

Obviously, a set of more than δ elements cannot be shattered (hence, the VC-dimension is
at most δ), and for any finite A ⊆ X, the projection of the ranges to A is

⋃δ
i=0

(
A
δ

)
—with

cardinality Φδ(|A|).
We note that a rough, but for our purposes good enough estimate for Φ is given by8

Φδ(n) 6 n
δ for δ > 2.

We have seen now that the maximum possible size of projections either grows expo-
nentially (2n in case of infinite VC-dimension) or it is bounded by a polynomial nδ in
case of finite VC-dimension δ). The latter is the key to the existence of small ε-nets.
Before shedding light on this, let us better understand when the VC-dimension is finite.

8A better estimate, at least for δ > 3, is given by Φδ(n) <
(
en
δ

)d for all n, d ∈ N, d 6 n.
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H.5 VC-dimension of Geometric Range Spaces

Halfspaces. Let us investigate the VC-dimension of (R2,H2). It is easily seen that three
points in the plane can be shattered by halfplanes, as long a they do not lie on a common
line. Hence, the VC-dimension is at least 3. Now consider 4 points. If three of them lie
on a common line, there is no way to separate the middle point on this line from the
other two by a halfplane. So let us assume that no three points lie on a line. Either
three of them are vertices of a triangle that contains the fourth point—then we cannot
possibly separate the fourth point from the remaining three points by a halfplane. Or the
four points are vertices of a convex quadrilateral—then there is no way of separating the
endpoints from a diagonal from the other two points. Consequently, four points cannot
be shattered, and VCdim(R2,H2) = 3 is established.

The above argument gets tedious in higher dimensions, if it works in a rigorous way
at all. Fortunately, we can employ a classic: By Radon’s Lemma (Theorem 4.8), every
set A of > d + 2 points in Rd can be partitioned into two disjoint subsets A1 and A2
such that conv(A1) ∩ conv(A2) 6= ∅. We get, as an easy implication, that a set A of
at least d + 2 points in Rd cannot be shattered by halfspaces. Indeed, let A1

.
∪ A2

be a partition as guaranteed by Radon’s Lemma. Now every halfspace containing A1
must contain at least one point of A2, hence h ∩ A = A1 is impossible for a halfspace
h and thus A is not shattered by Hd. Moreover, it is easily seen that the vertex set of
a d-dimensional simplex (there are d + 1 vertices) can be shattered by halfspaces (each
subset of the vertices forms a face of the simplex and can thus be separated from the
rest by a hyperplane). We summarize that

VCdim(Rd,Hd) = d+ 1 .

Let us now consider the range space (Rd, Ȟd), where Ȟd denotes the set of all closed
halfspaces below non-vertical hyperplanes9–we call these lower halfspaces. Since Ȟd ⊆
Hd, the VC-dimension of (Rd, Ȟd) is at most d + 1, but, in fact, it not too difficult to
show

VCdim(Rd, Ȟd) = d . (H.7)

(Check this claim at least for d = 2.) This range space is a geometric example where the
bound of Sauer’s Lemma is attained. Indeed, for any set A of n points in Rd in general
position10, it can be shown that ∣∣Ȟd∣∣A∣∣ = Φd(n).

9A hyperplane is called non-vertical if it can be specified by a linear equation
∑d
i=1 λixi = λd+1 with

λd 6= 0; see also Section 1.2
10No i + 2 on a common i-flat for i ∈ {1, 2, . . . , d − 1}; in particular, no d + 1 points on a common

hyperplane.
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Balls. It is easy to convince oneself that the VC-dimension of disks in the plane is 3:
Three points not on a line can be shattered and four points cannot. Obviously not, if
one of the points is in the convex hull of the other, and for four vertices of a convex
quadrilateral, it is not possible for both diagonals to be separated from the endpoints
of the respective other diagonal by a circle (if you try to draw a picture of this, you see
that you get two circles that intersect four times, which we know is not be the case).

A more rigorous argument which works in all dimensions is looming with the help of
(H.7), if we employ the following transformation called lifting map that we have already
encountered for d = 2 in Section 5.3:

Rd −→ Rd+1

(x1, x2, . . . , xd) = p 7→ `(p) = (x1, x2, . . . , xd, x1
2 + x2

2 + · · ·+ xd2)

(For a geometric interpretation, this is a vertical projection of Rd to the unit paraboloid
xd+1 = x1

2 + x2
2 + · · ·+ xd2 in Rd+1.) The remarkable property of this transformation

is that it maps balls in Rd to halfspaces in Rd+1 in the following sense.
Consider a ball Bd(c, ρ) (c = (c1, c2, . . . , cd) ∈ Rd the center, and ρ ∈ R+ the radius).

A point p = (x1, x2, . . . , xd) lies in this ball if and only if

d∑
i=1

(xi − ci)
2 6 ρ2 ⇔

d∑
i=1

(xi
2 − 2xici + ci

2) 6 ρ2

⇔

(
d∑
i=1

(−2ci)xi

)
+ (x1

2 + x2
2 + · · ·+ xd2) 6 ρ2 −

d∑
i=1

ci
2 ;

this equivalently means that `(p) lies below the non-vertical hyperplane (in Rd+1)

h = h(c, ρ) =

{
x ∈ Rd+1

∣∣∣∣∣
d+1∑
i=1

hixi = hd+2

}
with

(h1, h2, . . . , hd, hd+1, hd+2) =

(
(−2c1), (−2c2), . . . , (−2cd), 1, ρ

2 −

d∑
i=1

ci
2

)
.

It follows that a set A ⊆ Rd is shattered by Bd (the set of closed balls in Rd) if and only
if `(A) := {`(p) |p ∈ A} is shattered by Ȟd+1. Assuming (H.7), this readily yields

VCdim(Rd,Bd) = d+ 1 .

The lifting map we have employed here is a special case of a more general paradigm
called linearization which maps non-linear conditions to linear conditions in higher
dimensions.

We have clarified the VC-dimension for all examples of range spaces that we have
listed in Section H.2, except for the one involving simplices. The following exercise
should help to provide an answer.
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Exercise H.8. For a range space (X,R) of VC-dimension d and a number k ∈ N,
consider the range space (X, I) where ranges form intersections of at most k ranges
from R, that is, I = {

⋂k
i=1 Ri |∀i : Ri ∈ R}. Give an upper bound for the VC-

dimension of (X, I).

H.6 Small ε-Nets, an Easy Warm-up Version

Let us prove a first bound on the size of ε-nets when the VC-dimension is finite.

Theorem H.9. Let n ∈ N and (X,R) be a range space of VC-dimension d > 2. Then
for any A ⊆ X with |A| = n and any ε ∈ R+ there exists an ε-net N of A w.r.t. R
with |N| 6 dd lnn

ε
e.

Proof. We restrict our attention to the finite projected range space (A,R), R := R|A, for
which we know |R| 6 Φd(n) 6 nd. It suffices to show that there is a set N ⊆ A with
|N| 6 d lnn

ε
which contains an element from each r ∈ Rε := {r ∈ R : |r| > εn}.

Suppose, for some s ∈ N (to be determined), we let N ∼ As. For each r ∈ Rε, we
know that prob(r ∩N = ∅) < (1− ε)s 6 e−εs. Therefore,

prob(N is not ε-net of A) = prob(∃r ∈ Rε : r ∩N = ∅)
= prob(

∨
r∈Rε

(r ∩N = ∅))

6
∑
r∈Rε

prob(r ∩N = ∅) < |Rε|e
−εs 6 nde−εs .

It follows that if s is chosen so that nde−εs 6 1, then prob(N is not ε-net of A) < 1 and
there remains a positive probability for the event that N is an ε-net of A. Now

nde−εs 6 1 ⇔ nd 6 eεs ⇔ d lnn 6 εs.

That is, for s = dd lnn
ε
e, the probability of obtaining an ε-net is positive, and therefore

an ε-net of that size has to exist.11

If we are willing to invest a little more in the size of the random sample N, then the
probability of being an ε-net grows dramatically. More specifically, for s = dd lnn+λ

ε
e, we

have
nde−εs 6 nde−d lnn−λ = e−λ ,

and, therefore, a sample of that size is an ε-net with probability at least 1− e−λ.

11This line of argument “If an experiment produces a certain object with positive probability, then it has
to exist”, as trivial as it is, admittedly needs some time to digest. It is called The Probabilistic Method,
and was used and developed to an amazing extent by the famous Hungarian mathematician Paul Erdős
starting in the thirties.
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We realize that we need d lnn
ε

sample size to compensate for the (at most) nd subsets
of A which we have to hit—it suffices to ensure positive success probability. The extra
λ
ε
allows us to boost the success probability.
Also note that if A were shattered by R, then R = 2A and |R| = 2n. Using this bound

instead of nd in the proof above would require us to choose s to be roughly n ln2
ε

, a
useless estimate which even exceeds n unless ε is large (at least ln 2 ≈ 0.69).

Smallest enclosing balls, again It is time to rehabilitate ourselves a bit concerning the
suggested procedure for computing a small ball containing all but at most ε|A| points
from an n-point set A ⊆ Rd.

Let (Rd,Bdcompl) be the range space whose ranges consist of all complements of closed
balls in Rd. This has the same VC-dimension d+1 as (Rd,Bd). Indeed, if A∩r = A ′ for
a ball r, then A∩ (Rd \ r) = A \A ′, so A is shattered by Bd if and only if A is shattered
by Bd

compl.
Hence, if we choose a sample N of size s = d (d+1) lnn+λ

ε
e then, with probability

at least 1 − e−λ this is an ε-net for A w.r.t. Bdcompl. Let us quickly recall what this
means: whenever the complement of some ball B has empty intersection with N, then
this complement contains at most an ε|A| points of A. As a consequence, the smallest
ball enclosing N has at most ε|A| points of A outside, with probability at least 1− e−λ.

H.7 Even Smaller ε-Nets

We still need to prove part 2 of Theorem H.2, the existence of ε-nets whose size is
independent of A. For this, we employ the same strategy as in the previous section, i.e.
we sample elements from A uniformly at random, with replacement; a refined analysis
will show that—compared to the bound of Theorem H.9—much less elements suffice.
Here is the main technical lemma.

Lemma H.10. Let (X,R) be a range space of VC-dimension δ > 2, and let A ⊆ X be
finite. If x ∼ Am for m > 8/ε, then for the set Nx of elements occurring in x, we
have

prob(Nx is not an ε-net for A w.r.t. R) 6 2Φδ(2m)2−
εm
2 .

Before we prove this, let us derive the bound of Theorem H.2 from it. Let us recall
the statement.

Theorem H.2 (2). Let (X,R) be a range space with VC-dimension δ > 2. Then for every
finite A ⊆ X and every ε, 0 < ε 6 1, there is an ε-net of A w.r.t. R of size at most
8δ
ε
log2

4δ
ε

(independent of the size of A).

We want that
2Φδ(2m)2−

εm
2 < 1,
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since then we know that an ε-net of size m exists. We have

2Φδ(2m)2−
εm
2 < 1

⇐ 2(2m)δ < 2
εm
2

⇔ 1+ δ log2(2m) <
εm

2

⇐ 2δ log2m <
εm

2

⇔ 4δ

ε
<

m

log2m
.

In the second to last implication, we have used δ > 2 and m > 8. Now we claim that
the latter inequality is satisfied for m = 24δ

ε
log2

4δ
ε
. To see this, we need that m

log2m
> α

for m = 2α log2 α and α = 4δ
ε
. We compute

m

log2m
=

2α log2 α
log2(2α log2 α)

=
2α log2 α

1+ log2 α+ log2 log2 α
= α

2 log2 α
1+ log2 α+ log2 log2 α

> α

as long as

log2 α > 1+ log2 log2 α⇔ log2 α > log2 2 log2 α⇔ α > 2 log2 α,

which holds as long as α > 2, and this is satisfied for α = 4δ
ε
.

Proof. (Lemma H.10) By going to the projection (A, R|A), we may assume that X = A,
so we have a finite range space over n elements (see Section H.4). Fix ε ∈ R+. For
t ∈ N, a range r ∈ R and x ∈ At (a t-vector of elements from A), we define

count(r, x) = |{i ∈ [t] : xi ∈ r}|.

Now we consider two events over A2m. The first one is the bad event of not getting
an ε-net when we choose m elements at random from A (plus another m elements that
we ignore for the moment):

Q :=
{
xy ∈ A2m

∣∣ x ∈ Am, y ∈ Am, ∃r ∈ Rε : count(r, x) = 0} .
Recall that Rε = {r ∈ R : |r| > εn}. Thus prob(Q) = prob(Nx is not ε-net) which is
exactly what we want to bound.

The second auxiliary event looks somewhat weird at first:

J :=
{
xy ∈ A2m

∣∣∣ x ∈ Am, y ∈ Am, ∃r ∈ Rε : count(r, x) = 0 and count(r, y) >
εm

2

}
.

This event satisfies J ⊆ Q and contains pairs of sequences x and y with somewhat
contradicting properties for some r. While the first part x fails to contain any element
from r, the second part y has many elements from r.
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Claim 1. prob(J) 6 prob(Q) 6 2prob(J).

The first inequality is a consequence of J ⊆ Q. To prove the second inequality, we
show that

prob(J)
prob(Q)

=
prob(J ∩Q)

prob(Q)
= prob(J | Q) >

1

2
.

So suppose that xy ∈ Q, with “witness” r, meaning that r ∈ Rε and count(r, x) = 0.
We show that xy ∈ J with probability at least 1/2, for every fixed such x and y chosen
randomly from Am. This entails the claim.

The random variable count(r, y) is a sum of m independent Bernoulli experiments
with success probability p := |r|/n > ε (thus expectation p and variance p(1 − p)).
Using linearity of expectation and variance (the latter requires independence of the ex-
periments), we get

E(count(r, y)) = pm,

Var(count(r, y)) = p(1− p)m.

Now we use Chebyshew’s inequality12 to bound the probability of the “bad” event that
count(r, y) < εm

2
. We have

prob
(
count(r, y) <

εm

2

)
6 prob

(
count(r, y) <

pm

2

)
6 prob

(
|count(r, y) − E(count(r, y))| >

pm

2

)
= prob

(
|count(r, y) − E(count(r, y))| >

1

2(1− p)
Var(count(r, y))

)
6

4(1− p)2

p(1− p)m
=
4(1− p)

pm
6

4

pm
<

4

εm
6
1

2
,

since m > 8
ε
. Hence

prob
(
count(r, y) >

εm

2

)
>
1

2
,

and the claim is proved.
Now the weird event J reveals its significance: we can nicely bound its probability.

The idea is this: We enumerate A as A = {a1, a2, . . . , an} and let the type of z ∈ At be
the n-sequence

type(z) = (count(a1, z), count(a2, z), . . . , count(an, z)).

For example, the type of z = (1, 2, 4, 2, 2, 4) w.r.t. A = {1, 2, 3, 4} is type(z) = (1, 3, 0, 2).
Now fix an arbitrary type τ. We will bound the conditional probability prob(xy ∈ J |

xy has type τ), and the value that we get is independent of τ. It follows that the same
value also bounds prob(J).

12prob(|X− E(X)| > kVar(X)) 6 1
k2Var(X)
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Claim 2. prob(xy ∈ J | xy has type τ) 6 Φδ(2m)2−εm/2.

To analyze the probability in question, we need to sample z = xy uniformly at random
from all sequences of type τ. This can be done as follows: take an arbitrary sequence z ′

of type τ, and then apply a random permutation π ∈ S2m to obtain z = π(z ′), meaning
that

zi = z
′
π(i) for all i.

Why does this work? First of all, π preserves the type, and it is easy to see that all
sequences z of type τ can be obtained in this way. Now we simply count the number of
permutations that map z ′ to a fixed z and see that this number only depends on τ, so
it is the same for all z. Indeed, for every element ai ∈ A, there are τi! many ways of
mapping the ai’s in z ′ to the ai’s in z. The number of permutations that map z ′ to z is
therefore given by

n∏
i=1

τi!.

By these considerations,

prob(xy ∈ J | xy has type τ) = prob(π(z ′) ∈ J).

To estimate this, we let S be the set of distinct elements in z ′ (this is also a function of
the type τ). Since (X,R) has VC-dimension δ, we know from Lemma H.6 that | R|S | 6
Φδ(2m), so at most that many different subsets T of S can be obtained by intersections
with ranges r ∈ R, and in particular with ranges r ∈ Rε.

Now we look at some fixed such T , consider a permutation π and write π(z ′) = xy.
We call T a witness for π if no element of x is in T , but at least εm/2 elements of y are
in T . According to this definition,

π(z ′) ∈ J ⇔ π has some witness T ⊆ S.

By the union bound,

prob(π(z ′) ∈ J) = prob(∃T : T is a witness for π) 6
∑
T

prob(T is a witness for π).

Suppose that z ′ contains ` > εm/2 occurences of elements of T (for smaller `, T
cannot be a witness). In order for π(z ′) = xy to be in J, no element of T can appear in
the first half x, but all ` occurrences of elements from T must fall into the second half y.
Therefore, the probability of T being a witness for a random permutation is(

m
`

)(
2m
`

) =
m(m− 1) · · · (m− `+ 1)

2m(2m− 1) · · · (2m− `+ 1)
6 2−` 6 2−

εm
2 ,

since among all the
(
2m
`

)
equally likely ways in which π distributes the ` occurences in

z, exactly the
(
m
`

)
equally likely ways of putting them into y are good.13 Summing up

13This argument can be made more formal by explicitly counting the permutations that map {1, 2, . . . , `}
to the set {1, 2, . . . ,m}. We leave this to the reader.

260



Geometry: C&A 2019 H.7. Even Smaller ε-Nets

over all at most Φδ(2m) sets T , we get

prob(xy ∈ J | xy has type τ) 6 Φδ(2m)2−
εm
2 ,

for all τ.
The proof is finished by combining the two claims:

prob(Nx is not ε-net) = prob(Q) 6 2prob(J) 6 2Φδ(2m)2−
εm
2 .

Questions

92. What is a range space? Give a definition and a few examples.

93. What is an epsilon net? Provide a formal definition, and explain in words what
it means.

94. What is the VC dimension of a range space Give a definition, and compute the
VC dimension of a few example range spaces.

95. Which range spaces always have small epsilon nets (and how small), and
which ones don’t? Explain Theorem H.2.

96. How can you compute small epsilon nets? Explain the general idea, and give
the analysis behind the weaker bound of Theorem H.9.

97. How can you compute smaller epsilon nets? Sketch the main steps of the proof
of the stronger bound of Theorem H.2.
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