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Appendix G

Smallest Enclosing Balls

This problem is related to the linear programming problem, but in a way it is much
simpler, since a unique optimal solution always exists.

We let P be a set of n points in Rd. We are interested in finding a closed ball of
smallest radius that contains all the points in P, see Figure G.1.

Figure G.1: The smallest enclosing ball of a set of points in the plane

As an “application”, imagine a village that wants to build a firehouse. The location
of the firehouse should be such that the maximum travel time to any house of the village
is as small as possible. If we equate travel time with Euclidean distance, the solution is
to place the firehouse in the center of the smallest ball that covers all houses.

Existence It is not a priori clear that a smallest ball enclosing P exists, but this follows
from standard arguments in calculus. As you usually don’t find this worked out in papers
and textbooks, let us quickly do the argument here.
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Fix P and consider the continuous function ρ : Rd → R defined by

ρ(c) = max
p∈P
‖p− c‖, c ∈ Rd

Thus, ρ(c) is the radius of the smallest ball centered at c that encloses all points of P.
Let q be any point of P, and consider the closed ball

B = B(q, ρ(q)) := {c ∈ R2 | ‖c− q‖ 6 ρ(q)}.

Since B is compact, the function ρ attains its minimum over B at some point copt, and
we claim that copt is the center of a smallest enclosing ball of P. For this, consider any
center c ∈ R2. If c ∈ B, we have ρ(c) > ρ(copt) by optimality of copt in B, and if c /∈ B,
we get ρ(c) > ‖c− q‖ > ρ(q) > ρ(copt) since q ∈ B. In any case, we get ρ(c) > ρ(copt),
so copt is indeed a best possible center.

Uniqueness Can it be that there are two distinct smallest enclosing balls of P? No, and
to rule this out, we use the concept of convex combinations of balls. Let B = B(c, ρ)
be a closed ball with center c and radius ρ > 0. We define the characteristic function
of B as the function fB : R2 → R given by

fB(x) =
‖x− c‖2

ρ2
, x ∈ R2.

The name characteristic function comes from the following easy

Observation G.1. For x ∈ R2, we have

x ∈ B ⇔ fB(x) 6 1.

Now we are prepared for the convex combination of balls.

Lemma G.2. Let B0 = B(c0, ρ0) and B1 = (c1, ρ1) be two distinct balls with char-
acteristic functions fB0 and fB1. For λ ∈ (0, 1), consider the function fλ defined
by

fλ(x) = (1− λ)fB0(x) + λfB1(x).

Then the following three properties hold.

(i) fλ is the characteristic function of a ball Bλ = (cλ, ρλ). Bλ is called a (proper)
convex combination of B0 and B1, and we simply write

Bλ = (1− λ)B0 + λB1.

(ii) Bλ ⊇ B0 ∩ B1 and ∂Bλ ⊇ ∂B0 ∩ ∂B1.
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(iii) ρλ < max(ρ0, ρ1).

A proof of this lemma requires only elementary calculations and can be found for
example in the PhD thesis of Kaspar Fischer [3]. Here we will just explain what the
lemma means. The family of balls Bλ, λ ∈ (0, 1) “interpolates” between the balls B0
and B1: while we increase λ from 0 to 1, we continuously transform B0 into B1. All
intermediate balls Bλ “go through” the intersection of the original ball boundaries (a
sphere of dimension d− 2). In addition, each intermediate ball contains the intersection
of the original balls. This is property (ii). Property (iii) means that all intermediate
balls are smaller than the larger of B0 and B1. Figure G.2 illustrates the situation.

Bλ

B

B

0

1

Figure G.2: Convex combinations Bλ of two balls B0, B1

Using this lemma, we can easily prove the following

Theorem G.3. Given a finite point set P ⊆ Rd, there exists a unique ball of smallest
radius that contains P. We will denote this ball by B(P).

Proof. If P = {p}, the unique smallest enclosing ball is {p}. Otherwise, any smallest
enclosing ball of P has positive radius ρopt. Assume there are two distinct smallest
enclosing balls B0, B1. By Lemma G.2, the ball

B 1
2
=
1

2
B0 +

1

2
B1

is also an enclosing ball of P (by property (ii)), but it has smaller radius than ρopt (by
property (iii), a contradiction to B0, B1 being smallest enclosing balls.
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Geometry: C&A 2019 G.1. The trivial algorithm

Bases When you look at the example of Figure G.1, you notice that only three points
are essential for the solution, namely the ones on the boundary of the smallest enclosing
ball. Removing all other points from P would not change the smallest enclosing ball.
Even in cases where more points are on the boundary, it is always possible to find a
subset of at most three points (in the R2 case) with the same smallest enclosing ball.
This is again a consequence of Helly’s Theorem (Theorem 4.9).

Theorem G.4. Let P ⊆ Rd be a finite point set. There is a subset S ⊆ P, |S| 6 d + 1
such that B(P) = B(S).

Proof. If |P| < d + 1, we may choose S = P. Otherwise, let ρopt be the radius of the
smallest enclosing ball B(P) of P = {p1, . . . , pn}. Now define

Ci = {x ∈ Rd : ‖x− pi‖ < ρopt}, i = 1, . . . , n

to be the open ball around pi with radius ρopt. We know that the common intersection
of all the Ci is empty, since any point in the intersection would be a center of an enclosing
ball of P with radius smaller than ρopt. Moreover, the Ci are convex, so Helly’s Theorem
implies that there is a subset S of d + 1 points whose Ci’s also have an empty common
intersection. For this set S, we therefore have no enclosing ball of radius smaller than
ρopt either. Hence, B(S) has radius at leat ρopt; but since S ⊆ P, the radius of B(S) must
also be at most ρopt, and hence it is equal to ρopt. But then B(S) = B(P) follows, since
otherwise, both B(P) and B(S) would be smallest enclosing balls of S, a contradiction.

The previous theorem motivates the following

Definition G.5. Let P ⊆ Rd be a finite point set. A basis of P is an inclusion-minimal
subset S ⊆ P such that B(P) = B(S).

It follows that any basis of P has size at most d + 1. If the points are in general
position (no k + 3 on a common k-dimensional sphere), then P has a unique basis, and
this basis is formed by the set of points on the boundary of B(P).

G.1 The trivial algorithm

Theorem G.4 immediately implies the following (rather inefficient) algorithm for com-
puting B(P): for every subset S ⊆ P, |S| 6 d + 1, compute B(S) (in fixed dimension d,
this can be done in constant time), and return the one with largest radius.

Indeed, this works: for all S ⊆ P, the radius of B(S) is at most that of B(P), and there
must be at least one S, |S| 6 d + 1 (a basis of P) with B(S) = B(P). It follows that the
ball B(T) being returned has the same radius as B(P) and is therefore equal by T ⊆ P.

Assuming that d is fixed, the runtime of this algorithm is

O

(
d+1∑
i=0

(
n

i

))
= O(nd+1).
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If d = 2 (the planar case), the trivial algorithm has runtime O(n3). In the next
section, we discuss an algorithm that is substantially better than the trivial one in any
dimension.

In order to adapt Seidel’s randomized linear programming algorithm to the problem
of computing smallest enclosing balls, we need the following statements.

Exercise G.6. (i) Let P, R ⊆ Rd, P ∩ R = ∅. If there exists a ball that contains P and
has R on the boundary, then there is also a unique smallest such ball which
we denote by B(P, R).

(ii) Let P, R ⊆ Rd, P ∩ R = ∅. If B(P, R) exists and p ∈ P satisfies p /∈ B(P \ {p}, R),
then p is on the boundary of B(P, R), meaning that B(P, R) = B(P \ {p}, R∪ {p}).

Prove these two statements!

G.2 Welzl’s Algorithm

The idea of this algorithm is the following. Given P ⊆ Rd, the algorithm first recursively
computes B(P \ {p}) where p ∈ P is chosen uniformly at random. Then there are two
cases: if p ∈ B(P \ {p}) we have B(P) = B(P \ {p}) (it’s always good to rethink why this
holds) and so we are done already. If p /∈ B(P \ {p}), we still need to work, but the key
fact (that we prove below) is that in this case, p has to be on the boundary of B(P). We
can therefore recursively compute the smallest enclosing ball of P \ {p} that has p on its
boundary, and this is a simpler problem because it intuitively has one degree of freedom
less.

Let us formalize this idea.

Definition G.7. Let P, R ⊆ Rd be disjoint finite point sets. We define B(P, R) as the
smallest ball that contains P and has the points of R on its boundary ( if this ball
exists and is unique).

It is not hard to see that existence cannot always be guaranteed; for example if R is
contained in the convex hull of P, there can be no ball that contains P and has even a
single point of R on its boundary. But the following Lemma gives a number of useful
properties.

Lemma G.8. Let P, R ⊆ Rd be disjoint finite point sets, where R is affinely independent.

(i) If there is any ball that contains P and has R on its boundary, then a unique
smallest such ball B(P, R) exists.

(ii) If B(P, R) exists and p /∈ B(P \ {p}, R), then p is on the boundary of B(P, R),
meaning that B(P, R) = B(P \ {p}, R ∪ {p}).

(iii) If B(P, R) exists, there is a subset S ⊆ P of size |S| 6 d + 1 − |R| such that
B(P, R) = B(S, R).
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Geometry: C&A 2019 G.2. Welzl’s Algorithm

Before we can prove this, we need a helper lemma.

Lemma G.9. Let R ⊆ Rd, |R| > 1 be an affinely independent point set. Then the set

C(R) := {c ∈ Rd | c is the center of a ball that has R on its boundary} (G.10)

is a linear subspace of dimension d+ 1− |R|.

Proof. We have c ∈ C(R) if and only if there exists a number ρ2 such that

ρ2 = ‖c− p‖2 = cTc− 2cTp+ pTp, p ∈ R. (G.11)

Defining µ = ρ2 − cTc, this implies

µ = pTp− 2cTp, p ∈ R. (G.12)

The set of all (c, µ) satisfying the latter |R| equations is a linear subspace L of Rd+1.

Claim. L has dimension d+ 1− |R|.

To see this, let us write (G.12) in matrix form as follows.


p11 p12 · · · p1d 1

p21 p22 · · · p2d 1
...

...
...

...
p|R|1 p|R|2 · · · p|R|d 1



2c1
2c2
...
2cd
µ

 =


pT1p1
pT2p2
. . .

pT|R|p|R|

 , (G.13)

where R = p1, . . . , p|R|. We know from linear algebra that the dimension of the solution
space L is d + 1 minus the rank of the matrix. But this rank is |R| since the rows are
linearly independent by affine independence of R (we leave this easy argument to the
reader, also as a good exercise to recall the definition of affine independence).

It only remains to show that C(R) is also a linear subspace, and of the same dimension
as L. But this holds since the linear function f : C(R)→ L given by

f(c) = (c, pT1p1 − 2c
Tp1)

is a bijection between C(R) and L. The function is clearly injective, but it is also sur-
jective: if (c, µ) ∈ L, we satisfy (G.11) with ρ2 := µ + cTc, meaning that c ∈ C(R)
and

f(c) = (c, pT1p1 − 2c
Tp1) = (c, ‖c− p1‖2 − cTc) = (c, ρ2 − cTc) = (c, µ).

Now we can proceed with the proof of Lemma G.8.
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Proof. The proof of (i) works along the same lines as the one for B(P) in Section G, and
it differs only for R 6= ∅. In this case, choose s ∈ R arbitrarily.

Let C(P, R) be the set of all c ∈ Rd that are centers of balls containing P, and with R
on the boundary. Note that C(P, R) is closed, since it results from intersecting the linear
space C(R) with the closed set

{c ∈ Rd | max
p∈P
‖c− p‖ 6 max

p∈R
‖p− c‖}.

By assumption, the set C(P, R) is nonempty. We define

ρ(c) = ‖s− c‖, c ∈ C(P, R).

Thus, ρ(c) is the radius of the unique ball centered at c that encloses all points of P and
has all points of R on the boundary. To prove that there is some smallest ball containing
P and with R on the boundary, we need to show that the continuous function ρ attains a
minimum over C(P, R). To be able to restrict attention to a closed and bounded (hence
compact) subset of C(P, R), we choose some c0 ∈ C(P, R); then ρ(c0) is certainly an upper
bound for the minimum value, meaning that any c ∈ C(P, R) outside the compact set

{c ∈ C(P, R) | ρ(c) 6 ρ(c0)}

canot be a candidate for the center of a smallest ball. Within this compact set, we do
get a minimum copt, and this is the desired center of a smallest enclosing ball of P that
has R on the boundary.

To prove uniquenes, we invoke again the convex combination of balls: Assuming that
there are two smallest balls B0, B1, then the ball

1

2
B0 +

1

2
B1

is a smaller ball that still contains P and still has R on its boundary (Lemma G.2 (ii)),
a contradiction.

Now for part (ii). Again, convex combinations of balls come to our help. Consider
the two balls B(P, R) and B(P\{p}, R) (note that existence of the former implies existence
of the latter via part (i)). If p is not on the boundary of B(P, R), we have the situation
of Figure G.3.

Then there is some small ε > 0 such that the ball

(1− ε)B(P, R) + εB(P \ {p}, R)

(drawn dashed in Figure G.3) still contains P and has R on the boundary, but has smaller
volume than B(P, R) by Lemma G.2 (iii), a contradiction.

Now we turn to (iii).
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B(P\{p},R)

B(P,R)

P\{p}

p

R

Figure G.3: Proof of Lemma G.8(ii)

G.3 The Swiss Algorithm

The name of this algorithm comes from the democratic way in which it works. Let us
describe it for the problem of locating the firehouse in a village.

Here is how it is done the Swiss way: a meeting of all n house owners is scheduled,
and every house owner is asked to put a ballot of paper with his/her name on it into a
voting box. Then a constant number r (to be determined later) of ballots is drawn at
random from the voting box, and the selected house owners have the right to negotiate a
location for the firehouse among them. They naturally do this in a selfish way, meaning
that they agree on the center of the smallest enclosing ball D of just their houses as the
proposed location.

The house owners that were not in the selected group now fall into two classes: those
that are happy with the proposal, and those that are not. Let’s say that a house owner
p is happy if and only if his/her house is also covered by D. In other words, p is happy
if and only if the proposal would have been the same with p as an additional member of
the selected group.

Now, the essence of Swiss democracy is to negotiate until everybody is happy, so as
long as there are any unhappy house owners at all, the whole process is repeated. But
in order to give the unhappy house owners a higher chance of influencing the outcome
of the next round, their ballots in the voting box are being doubled before drawing r
ballots again. Thus, there are now two ballots for each unhappy house owner, and one
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for each happy one.
After round k, a house owner that has been unhappy after exactly i of the k rounds

has therefore 2i ballots in the voting box for the next round.
The obvious question is: how many rounds does it take until all house owners are

happy? So far, it is not even clear that the meeting ever ends. But Swiss democracy
is efficient, and we will see that the meeting actually ends after an expected number
of O(logn) rounds. We will do the analysis for general dimension d (just imagine the
village and its houses to lie in Rd).

G.4 The Forever Swiss Algorithm

In the analysis, we want to argue about a fixed round k, but the above algorithm may
never get to this round (for large k, we even strongly hope that it never gets there). But
for the purpose of the analysis, we formally let the algorithm continue even if everybody
is happy after some round (in such a round, no ballots are being doubled).

We call this extension the Forever Swiss Algorithm. A round is called controversial
if it renders at least one house owner unhappy.

Definition G.14.

(i) Let mk be the random variable for the total number of ballots after round k
of the Forever Swiss Algorithm. We set m0 = n, the initial number of ballots.

(ii) Let Ck be the event that the first k rounds in the Forever Swiss Algorithm are
controversial.

A lower bound for E(mk) Let S ⊆ P be a basis of P. Recall that this means that S is
inclusion-minimal with B(S) = B(P).

Observation G.15. After every controversial round, there is an unhappy house owner
in S.

Proof. Let Q be the set of selected house owners in the round. Let us write B > B ′ for
two balls if the radius of B is at least the radius of B ′.

If all house owners in S were happy with the outcome of the round, we would have

B(Q) = B(Q ∪ S) > B(S) = B(P) > B(Q),

where the inequalities follow from the corresponding superset relations. The whole chain
of inequalities would then imply that B(P) and B(Q) have the same radius, meaning that
they must be equal (we had this argument before). But then, nobody would be unhappy
with the round, a contradiction to the current round being controversial.

Since |S| 6 d + 1 by Theorem G.4, we know that after k rounds, some element of S
must have doubled its ballots at least k/(d + 1) times, given that all these rounds were
controversial. This implies the following lower bound on the total number mk of ballots.
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Lemma G.16.

E(mk) > 2
k/(d+1) prob(Ck), k > 0.

Proof. By the partition theorem of conditional expectation, we have

E(mk) = E(mk | Ck) prob(Ck) + E(mk | Ck) prob(Ck) > 2k/(d+1) prob(Ck).

An upper bound for E(mk) The main step is to show that the expected increase in the
number of ballots from one round to the next is bounded.

Lemma G.17. For all m ∈ N and k > 0,

E(mk | mk−1 = m) 6 m

(
1+

d+ 1

r

)
.

Proof. Since exactly the “unhappy ballots” are being doubled, the expected increase in
the total number of ballots equals the expected number of unhappy ballots, and this
number is

1(
m
r

) ∑
|R|=r

∑
h/∈R

[h is unhappy with R] =
1(
m
r

) ∑
|Q|=r+1

∑
h∈Q

[h is unhappy with Q \ {h}].

(G.18)

Claim: Every (r + 1)-element subset Q contains at most d + 1 ballots such that h is
unhappy with Q \ {h}.

To see the claim, choose a basis S, |S| 6 d + 1, of the ball resulting from drawing
ballots in Q. Only the removal of a ballot h belonging to some house owner p ∈ S can
have the effect that Q and Q \ {h} lead to different balls. Moreover, in order for this to
happen, the ballot h must be the only ballot of the owner p. This means that at most
one ballot h per owner p ∈ S can cause h to be unhappy with Q \ {h}.

We thus get

1(
m
r

) ∑
|R|=r

∑
h/∈R

[h is unhappy with R] 6 (d+1)

(
m
r+1

)(
m
r

) = (d+1)
m− r

r+ 1
6 (d+1)

m

r
. (G.19)

By addingm, we get the new expected total number E(mk | mk−1 = m) of ballots.

From this, we easily get our actual upper bound on E(mk).

Lemma G.20.

E(mk) 6 n

(
1+

d+ 1

r

)k
, k > 0.
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Proof. We use induction, where the case k = 0 follows from m0 = n. For k > 0, the
partition theorem of conditional expectation gives us

E(mk) =
∑
m>0

E(mk | mk−1 = m) prob(mk−1 = m)

6

(
1+

d+ 1

r

)∑
m>0

m prob(mk−1 = m)

=

(
1+

d+ 1

r

)
E(mk−1).

Applying the induction hypothesis to E(mk−1), the lemma follows.

Putting it together Combining Lemmas G.16 and G.20, we know that

2k/(d+1) prob(Ck) 6 n
(
1+

d+ 1

r

)k
,

where Ck is the event that there are k or more controversial rounds.
This inequality gives us a useful upper bound on prob(Ck), because the left-hand

side power grows faster than the right-hand side power as a function of k, given that r
is chosen large enough.

Let us choose r = c(d+ 1)2 for some constant c > log2 e ≈ 1.44. We obtain

prob(Ck) 6 n
(
1+

1

c(d+ 1)

)k
/2k/(d+1) 6 n2k log2 e/(c(d+1))−k/(d+1),

using 1+ x 6 ex = 2x log2 e for all x. This further gives us

prob(Ck) 6 nαk, (G.21)

α = α(d, c) = 2(log2 e−c)/c(d+1) < 1.

This implies the following tail estimate.

Lemma G.22. For any β > 1, the probability that the Forever Swiss Algorithm per-
forms at least dβ log1/α ne controversial rounds is at most

1/nβ−1.

Proof. The probability for at least this many controversial rounds is at most

prob(Cdβ log1/αne) 6 nα
dβ log1/αne 6 nαβ log1/αn = nn−β = 1/nβ−1.
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In a similar way, we can also bound the expected number of controversial rounds of
the Forever Swiss Algorithm. This also bounds the expected number of rounds of the
Swiss Algorithm, because the latter terminates upon the first non-controversial round.

Theorem G.23. For any fixed dimension d, and with r = dlog2 e(d+1)2e > log2 e(d+1)2,
the Swiss algorithm terminates after an expected number of O(logn) rounds.

Proof. By definition of Ck (and using E(X) =
∑
m>1 prob(X > m) for a random variable

with values in N), the expected number of rounds of the Swiss Algorithm is∑
k>1

prob(Ck).

For any β > 1, we can use (G.21) to bound this by
dβ log1/αne−1∑

k=1

1+ n

∞∑
k=dβ log1/αne

αk = dβ log1/α ne− 1+ n
αdβ log1/αne

1− α

6 β log1/α n+ n
αβ log1/αn

1− α

= β log1/α n+
n−β+1

1− α
= β log1/α n+ o(1).

What does this mean for d = 2? In order to find the location of the firehouse
efficiently (meaning in O(logn) rounds), 13 ballots should be drawn in each round. The
resulting constant of proportionality in the O(logn) bound will be pretty high, though.
To reduce the number of rounds, it may be advisable to choose r somewhat larger.

Since a single round can be performed in time O(n) for fixed d, we can summarize
our findings as follows.

Theorem G.24. Using the Swiss Algorithm, the smallest enclosing ball of a set of n
points in fixed dimension d can be computed in expected time O(n logn).

The Swiss algorithm is a simplification of an algorithm by Clarkson [1, 2].
The bound of the previous Theorem already compares farovably with the bound of

O(nd+1) for the trivial algorithm, see Section G.1, but it does not stop here. We can
even solve the problem in expected linear time O(n), by using an adaptation of Seidel’s
linear programming algorithm [4].

Exercise G.25. Let H be a set with n elements and f : 2H → R a function that maps
subsets of H to real numbers. We say that h ∈ H violates G ⊆ H if f(G∪ {h}) 6= f(G)
(it follows that h /∈ G). We also say that h ∈ H is extreme in G if f(G \ {h}) 6= f(G)
(it follows that h ∈ G).
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Now we define two random variables Vr, Xr :
(
H
r

)
→ R where Vr maps an r-

element set R to the number of elements that violate R, and Xr maps an r-element
set R to the number of extreme elements in R.

Prove the following equality for 0 6 r < n:

E(Vr)

n− r
=
E(Xr+1)

r+ 1
.

Exercise G.26. Imagine instead of doubling the ballots of the unhappy house owners
in the Swiss Algorithm, we would multiply their number by some integer t ∈ N.
Does the analysis of the algorithm improve (i.e., does one get a better bound on
the expected number of rounds, following the same approach)?

Exercise G.27. We have shown that for d = 2 and sample size r = 13, the Swiss
algorithm takes an expected number of O(logn) rounds. Compute the constants,
i.e., find numbers c1, c2 such that the expected number of rounds is always bounded
by c1 log2 n+ c2. Try to make c1 as small as possible.

G.5 Smallest Enclosing Balls in the Manhattan Distance

We can also compute smallest enclosing balls w.r.t. distances other than the Euclidean
distance. In general, if δ : Rd ×Rd → R is a metric, the smallest enclosing ball problem
with respect to δ is the following.

Given P ⊆ Rd, find c ∈ Rd and ρ ∈ R such that

d(c, p) 6 ρ, p ∈ P,

and ρ is as small as possible.
For example, if d(x, y) = ‖x − y‖∞ = maxdi=1 |xi − yi|, the problem is to find a

smallest axis-parallel cube that contains all the points. This can be done in time O(d2n)
by finding the smallest enclosing box. The largest side-length of the box corresponds
to the largest extent of the point set in any of the coordinate directions; to obtain a
smallest enclosing cube, we simply extend the box along the other directions until all
side lengths are equal.

A more interesting case is d(x, y) = ‖x−y‖1 =
∑d
i=1 |xi−yi|. This is the Manhattan

distance. There, the problem can be written as

minimize ρ

subject to
∑d
i=1 |pji − ci| 6 ρ, j = 1, . . . , n.

where pj is the j-th point and pji it’s i-th coordinate Geometrically, the problem is
now that of finding a smallest cross polytope (generalized octahedron) that contains the
points. Algebraically, we can reduce it to a linear program, as follows.

We replace all |pji − ci| by new variables yji and add the additional constraints
yji > pji − ci and yji > ci − pji. The problem now is a linear program.
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minimize ρ

subject to
∑d
i=1 yji 6 ρ, j = 1, . . . , n

yji > pji − ci, ∀i, j
yji > ci − pji, ∀i, j.

The claim is that the solution to this linear program also solves the original problem.
For this, we need to observe two things: first of all, every optimal solution (c̃, ρ̃) to
the original problem induces a feasible solution to the LP with the same value (simply
set yji := |pji − c̃i|), so the LP solution has value equal to ρ̃ or better. The second
is that every optimal solution ((ỹji)i,j, ρ̃) to the LP induces a feasible solution to the
orginal problem with the same value: by

∑d
i=1 ỹji 6 ρ̃ and ỹji > |pji − ci|, we also have∑d

i=1 |pji − ci| 6 ρ̃. This means, the original problem has value ρ̃ or better. From these
two observations it follows that both problems have the same optimal value ρopt, and
an LP solution of this value yields a smallest enclosing ball of P w.r.t. the Manhatten
distance.

Questions

88. Formulate the Swiss Algorithm for computing smallest enclosing balls, and
discuss its relation with the Forever Swiss algorithm that we employ for the
analysis!

89. The analysis of the Forever Swiss algorithm depends on a lower and an upper
bound for the expected number of ballots after k controversial rounds. Sketch
how these lower and upper bounds can be obtained, and how termination of
the algorithm (with high probability) can be derived from them.

90. What is the expected runtime of the Swiss Algorithm for computing the small-
est enclosing ball of a set of n points in fixed dimension d?

91. How can you compute smallest enclising balls in the Manhattan metric?
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