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Appendix E

Linear Programming

This lecture is about a special type of optimization problems, namely linear programs.
We start with a geometric problem that can directly be formulated as a linear program.

E.1 Linear Separability of Point Sets

Let P ⊆ Rd and Q ⊆ Rd be two finite point sets in d-dimensional space. We want to
know whether there exists a hyperplane that separates P from Q (we allow non-strict
separation, i.e. some points are allowed to be on the hyperplane). Figure E.1 illustrates
the 2-dimensional case.

Figure E.1: Left: there is a separating hyperplane; Right: there is no separating
hyperplane

How can we formalize this problem? A hyperplane is a set of the form

h = {x ∈ Rd : h1x1 + h2x2 + · · ·+ hdxd = h0},

where hi ∈ R, i = 0, . . . , d. For example, a line in the plane has an equation of the form
ax+ by = c.
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The vector η(h) = (h1, h2, . . . , hd) ∈ Rd is called the normal vector of h. It is
orthogonal to the hyperplane and usually visualized as in Figure E.2(a).

h: ax + by = c

η (h) = (a,b)

(a) The normal vector of a hyperplane

h: ax + by = c

η (h) = (a,b)

h

h

+

−

(b) The two halfspaces of a hyperplane

Figure E.2: The concepts of hyperplane, normal vector, and halfspace

Every hyperplane h defines two closed halfspaces

h+ = {x ∈ Rd : h1x1 + h2x2 + · · ·+ hdxd 6 h0},

h− = {x ∈ Rd : h1x1 + h2x2 + · · ·+ hdxd > h0}.

Each of the two halfpsaces is the region of space “on one side” of h (including h itself).
The normal vector η(h) points into h−, see Figure E.2(b). Now we can formally define
linear separability.

Definition E.1. Two point sets P ⊆ Rd and Q ⊆ Rd are called linearly separable if there
exists a hyperplane h such that P ⊆ h+ and Q ⊆ h−. In formulas, if there exist real
numbers h0, h1, . . . , hd such that

h1p1 + h2p2 + · · ·+ hdpd 6 h0, p ∈ P,
h1q1 + h2q2 + · · ·+ hdqd > h0, q ∈ Q.

As we see from Figure E.1, such h0, h1, . . . , hd may or may not exist. How can we
find out?

E.2 Linear Programming

The problem of testing for linear separability of point sets is a special case of the general
linear programming problem.

Definition E.2. Given n, d ∈ N and real numbers

bi , i = 1, . . . , n,

cj , j = 1, . . . , d,

aij , i = 1, . . . , n, j = 1, . . . , d,

the linear program defined by these numbers is the problem of finding real numbers
x1, x2, . . . , xd such that
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(i)
∑d

j=1 aijxj 6 bi, i = 1, . . . , n, and

(ii)
∑d

j=1 cjxj is as large as possible subject to (i).

Let us get a geometric intuition: each of the n constraints in (i) requires x =
(x1, x2, . . . , xd) ∈ Rd to be in the positive halfspace of some hyperplane. The intersection
of all these halfspaces is the feasible region of the linear program. If it is empty, there
is no solution—the linear program is called infeasible.

Otherwise—and now (ii) enters the picture—we are looking for a feasible solution x
(a point inside the feasible region) that maximizes

∑d
j=1 cjxj. For every possible value

γ of this sum, the feasible solutions for which the sum attains this value are contained
in the hyperplane

{x ∈ Rd :

d∑
j=1

cjxj = γ}

with normal vector c = (c1, . . . , cd). Increasing γ means to shift the hyperplane into
direction c. The highest γ is thus obtained from the hyperplane that is most extreme in
direction c among all hyperplanes that intersect the feasible region, see Figure E.3.
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Figure E.3: A linear program: finding the feasible solution in the intersection of five
positive halfspaces that is most extreme in direction c (has highest value
γ =

∑d
j=1 cjxj)

In Figure E.3, we do have an optimal solution (a feasible solution x of highest value∑d
j=1 cjxj), but in general, there might be feasible solutions of arbitrarily high γ-value.

In this case, the linear program is called unbounded, see Figure E.4.
It can be shown that infeasibility and unboundedness are the only obstacles for the

existence of an optimal solution. If the linear program is feasible and bounded, there
exists an optimal solution.
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Figure E.4: An unbounded linear program

This is not entirely trivial, though. To appreciate the statement, consider the problem
of finding a point (x, y) that (i) satisfies y > ex and (ii) has smallest value of y among all
(x, y) that satisfy (i). This is not a linear program, but in the above sense it is feasible
(there are (x, y) that satisfy (i)) and bounded (y is bounded below from 0 over the set of
feasible solutions). Still, there is no optimal solution, since values of y arbitrarily close
to 0 can be attained but not 0 itself.

Even if a linear program has an optimal solution, it is in general not unique. For
example, if you rotate c in Figure E.3 such that it becomes orthogonal to the top-right
edge of the feasible region, then every point of this edge is an optimal solution. Why
is this called a linear program? Because all constraints are linear inequalities, and the
objective function is a linear function. There is also a reason why it is called a linear
program, but we won’t get into this here (see [3] for more background).

Using vector and matrix notation, a linear program can succinctly be written as
follows.

(LP) maximize c>x

subject to Ax 6 b

Here, c, x ∈ Rd, b ∈ Rn, A ∈ Rn×d, and ·> denotes the transpose operation. The in-
equality “6” is interpreted componentwise. The vector x represents the variables, c
is called the objective function vector, b the right-hand side, and A the constraint
matrix.

To solve a linear programs means to either report that the problem is infeasible or
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unbounded, or to compute an optimal solution x∗. If we can solve linear programs, we
can also decide linear separability of point sets. For this, we check whether the linear
program

maximize 0

subject to h1p1 + h2p2 + · · ·+ hdpd − h0 6 0, p ∈ P,
h1q1 + h2q2 + · · ·+ hdqd − h0 > 0, q ∈ Q.

in the d+ 1 variables h0, h1, h2, . . . , hd and objective function vector c = 0 is feasible or
not. The fact that some inequalities are of the form “>” is no problem, of course, since
we can multiply an inequality by −1 to turn “>” into “6”.

E.3 Minimum-area Enclosing Annulus

Here is another geometric problem that we can write as a linear program, although this is
less obvious. Given a point set P ⊆ R2, find a minimum-area annulus (region between
two concentric circles) that contains P; see Figure E.5 for an illustration.

R

r

c

Figure E.5: A minimum-area annulus containing P

The optimal annulus can be used to test whether the point set P is (approximately)
on a common circle which is the case if the annulus has zero (or small) area.

Let us write this as an optimization problem in the variables c = (c1, c2) ∈ R2 (the
center) and r, R ∈ R (the small and the large radius).

minimize π(R2 − r2)
subject to r2 6 ‖p− c‖2 6 R2, p ∈ P.
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This neither has a linear objective function nor are the constraints linear inequalities.
But a variable substitution will take care of this. We define new variables

u := r2 − ‖c‖2, (E.3)
v := R2 − ‖c‖2. (E.4)

Omitting the factor π in the objective function does not affect the optimal solution (only
its value), hence we can equivalently work with the objective function v − u = R2 − r2.
The constraint r2 6 ‖p− c‖2 is equivalent to r2 6 ‖p‖2 − 2p>c+ ‖c‖2, or

u+ 2p>c 6 ‖p‖2.

In the same way, ‖p− c‖ 6 R turns out to be equivalent to

v+ 2p>c > ‖p‖2.

This means, we now have a linear program in the variables u, v, c1, c2:

maximize u− v
subject to u+ 2p>c 6 ‖p‖2, p ∈ P

v+ 2p>c > ‖p‖2, p ∈ P.

From optimal values for u, v and c, we can also reconstruct r2 and R2 via (E.3) and (E.4).
It cannot happen that r2 obtained in this way is negative: since we have r2 6 ‖p − c‖2
for all p, we could still increase u (and hence r2 to at least 0), which is a contradicition
to u− v being maximal.

Exercise E.5. a) Prove that the problem of finding a largest disk inside a convex
polygon can be formulated as a linear program! What is the number of vari-
ables in your linear program?

b) Prove that the problem of testing whether a simple polygon is starshaped can
be formulated as a linear program.

Exercise E.6. Given a simple polygon P as a list of vertices along its boundary. De-
scribe a linear time algorithm to decide whether P is star-shaped and—if so—to
construct the so-called kernel of P, that is, the set of all star-points.

E.4 Solving a Linear Program

Linear programming was first studied in the 1930’s -1950’s, and some of its original
applications were of a military nature. In the 1950’s, Dantzig invented the simplex
method for solving linear programs, a method that is fast in practice but is not known
to come with any theoretical guarantees [1].

The computational complexity of solving linear programs was unresolved until 1979
when Leonid Khachiyan discovered a polynomial-time algorithm known as the ellipsoid
method [2]. This result even made it into the New York times.
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From a computational geometry point of view, linear programs with a fixed number
of variables are of particular interest (see our two applications above, with d and 4
variables, respectively, where d may be 2 or 3 in some relavant cases). As was first shown
by Megiddo, such linear programs can be solved in time O(n), where n is the number of
constraints [4]. In the next lecture, we will describe a much simpler randomized O(n)
algorithm due to Seidel [5].

Questions

83. What is a linear program? Give a precise definition! How can you visualize
a linear program? What does it mean that the linear program is infeasible /
unbounded?

84. Show an application of linear programming! Describe a geometric problem that
can be formulated as a linear program, and give that formulation!
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