
Geometry: Combinatorics & Algorithms, Lecture Notes 2018
geometry.inf.ethz.ch/gca18-D.pdf

Appendix D

Translational Motion Planning

In a basic instance of motion planning, a robot—modeled as a simple polygon R—moves
by translation amidst a set P of polygonal obstacles. Throughout its motion the robot
must not penetrate any of the obstacles but touching them is allowed. In other words,
the interior of R must be disjoint from the obstacles at any time. Formulated in this
way, we are looking at the motion planning problem in working space (Figure D.1a).

However, often it is useful to look at the problem from a different angle, in so-called
configuration space. Starting point is the observation that the placement of R is fully
determined by a vector ~v = (x, y) ∈ R2 specifying the translation of R with respect to
the origin. Hence, by fixing a reference point in R and considering it the origin, the
robot becomes a point in configuration space (Figure D.1b). The advantage of this point
of view is that it is much easier to think of a point moving around as compared to a
simple polygon moving around.

R

(a) Working Space.

R

(b) Configuration Space.

Figure D.1: Working space and configuration space for a robot R and a collection of
polygonal obstacles.

The next question is: How do obstacles look like in configuration space? For an
obstacle P ∈ P the set C(P) = {~v ∈ R2 | R+~v ∩ P 6= ∅} in configuration space corresponds

210

https://geometry.inf.ethz.ch/gca18-D.pdf


Geometry: C&A 2019 D.1. Complexity of Minkowski sums

to the obstacle P in the original setting. We write R+~v for theMinkowski sum {~r+~v | ~r ∈
R}. Our interest is focused on the set F = R2 \

⋃
P∈P C(P) of free placements in which

the robot does not intersect any obstacle.

R

P − R

Figure D.2: The Minkowski sum of an obstacle with an inverted robot.

Proposition D.1. C(P) = P − R.

Proof. ~v ∈ P − R ⇐⇒ ~v = ~p − ~r, for some ~p ∈ P and ~r ∈ R. On the other hand,
R+~v ∩ P 6= ∅ ⇐⇒ ~r+~v = ~p, for some ~p ∈ P and ~r ∈ R.

D.1 Complexity of Minkowski sums

Recall that the Minkowski sum of two point sets P,Q ⊆ R is defined as P+Q = {p+ q |

p ∈ P, q ∈ Q}.

Theorem D.2. Let P be an m-vertex polygon and Q an n-vertex polygon. Then:

1. If both P and Q are convex, then their Minkowski sum P+Q has at most m+n
vertices.

2. If P or Q is convex, then P +Q has O(mn) vertices.

3. In any case, P +Q has O(m2n2) vertices.

Proof. The first claim can be proven using the notion of extremal points. If
−→
d = (dx, dy)

is a direction in the plane and P ⊆ R2 is a set of points, then an extremal point of P in
direction

−→
d is a point p = (px, py) ∈ P that maximizes pxdy + pydx:

211



Appendix D. Translational Motion Planning Geometry: C&A 2019

It is easy to see that, if P and Q are convex polygons and r ∈ P +Q is an extremal
point of P + Q in some direction

−→
d , then r is the sum of some extremal points p ∈ P

and q ∈ Q in direction
−→
d . If

−→
d is chosen in “general position”, then p, q, and r will be

vertices of P, Q, and P +Q, respectively.
For every

−→
d in general position, let p−→

d
and q−→

d
be the extremal points in P and Q,

respectively, in direction
−→
d . Then the vertices of P+Q are the precisely sums p−→

d
+q−→

d

over all
−→
d . But as

−→
d varies continuously and makes a full turn, the pair (p−→

d
, q−→

d
) can

change at most m+ n times. This proves the first claim.
For the second claim we need the notion of pseudodiscs. A set P = {P1, . . . , Pn}

of objects in the plane is called a set of pseudodiscs if, for every distinct i and j, the
boundaries of Pi and Pj intersect in at most two points. That is, the objects “behave"
the way discs behave, even though they might not be actual discs.

(Note that it makes no sense to ask whether a single object Pi is a pseudodisc; it only
makes sense to ask whether a set of objects is a set of pseudodiscs.)

Now we need an auxiliary lemma:

Lemma D.3. Let P be a set of convex objects in the plane that are pairwise interior-
disjoint, and let Q be a convex object in the plane. Then the set P +Q = {P +Q |

P ∈ P} is a set of pseudodiscs.

Proof. Suppose for a contradiction that the boundaries of P1 +Q and P2 +Q intersect
four times, for some P1, P2 ∈ P. This means that there are four directions

−→
d 1,
−→
d 2,
−→
d 3,−→

d 4, in this circular order, such that P1 is more extreme than P2 in directions
−→
d 1 and−→

d 3, while P2 is more extreme than P1 in directions
−→
d 2 and

−→
d 4. But such an alternation

cannot happen since P1 and P2 are interior-disjoint.

And we need a second auxiliary lemma:

Lemma D.4. Let P be a set of polygonal pseudodiscs with n vertices in total. Then
their union U =

⋃
P hast at most 2n vertices.

⇒

Proof. We charge every vertex of the union U to a vertex of P in such a way that every
vertex of P receives at most two charges.

Let v be a vertex of U. If v is a vertex of P then we simply charge v to itself. The other
case is where v is the intersection point of two edges e1, e2, belonging to the boundaries
of two distinct polygons P1, P2 ∈ P. In such a case there must be an endpoint w of one
edge e1 or e2 that lies inside the other polygon P2 or P1 (since P is a set of pseudodiscs).
We charge v to w. It is clear that w can receive at most two charges (coming from the

212



Geometry: C&A 2019 D.2. Minkowski sum of two convex polygons

two edges adjacent to w). And every vertex of a polygon in P that is not contained in
any other polygon receives at most one charge.

Now we are ready to prove the second claim of Theorem D.2: Suppose P is convex.
Triangulate Q into n − 2 triangles T1, T2, . . . , Tn−2. Then P + Q =

⋃
i(P + Ti). By the

first claim of our Theorem, each P+ Ti is a convex polygon with at most m+ 3 vertices.
Therefore, by Lemmas D.3 and D.4, their union has at most 2(m+ 3)(n− 2) = O(mn)
vertices.

For the third part of our Theorem, let P and Q be arbitrary polygons. Triangulate
them into triangles S1, . . . , Sm−2 and T1, . . . , Tn−2, respectively. Then P+Q =

⋃
i,j(Si+

Tj). Arguing as before, for every fixed i, the union Xi =
⋃
j(Si + Tj) has at most

12(n − 2) vertices and as many edges. Each vertex in P +Q =
⋃
i Xi is either a vertex

of some Xi, or the intersection of two edges in two different Xi, Xj. There are at most(
12(m−2)(n−2)

2

)
= O(m2n2) vertices of the latter type.

We leave as an exercise to show that each case of Theorem D.2 is tight in the worst
case.

D.2 Minkowski sum of two convex polygons

Let P and Q be convex polygons, given as circular lists of vertices. Construct the
corresponding circular lists of edges EP and EQ. Merge EP and EQ into a single list of
edges E that is sorted by angle. Then E is the list of edges of P +Q:

+ =

Merging of two sorted lists can be done in linear time.

D.3 Constructing a single face

Theorem D.5. Given a set S of n line segments and a point x ∈ R2, the face of A(S)
that contains x can be constructed in O(λ3(n) logn) expected time.

Phrased in terms of translational motion planning this means the following.

Corollary D.6. Consider a simple polygon R with k edges (robot) and a polygonal
environment P that consists of n edges in total. The free space of all positions of R

213



Appendix D. Translational Motion Planning Geometry: C&A 2019

that can be reached by translating it without properly intersecting an obstacle from
P has complexity O(λ3(kn)) and it can be constructed in O(λ3(kn) log(kn)) expected
time.

Below we sketch1 a proof of Theorem D.5 using a randomized incremental construc-
tion, by constructing the trapezoidal map induced by the given set S of segments. As
before, suppose without loss of generality that no two points (intersection points or
endpoints) have the same x-coordinate.

In contrast to the algorithm you know, here we want to construct a single cell only,
the cell that contains x. Whenever a segment closes a face, splitting it into two, we
discard one of the two resulting faces and keep only the one that contains x. To detect
whether a face is closed, use a disjoint-set (union-find) data structure on S. Initially,
all segments are in separate components. The runtime needed for the disjoint-set data
structure is O(nα(n)), which is not a dominating factor in the bound we are heading
for.

Insert the segments of S in order s1, . . . , sn, chosen uniformly at random. Maintain
(as a doubly connected edge list) the trapezoidal decomposition of the face fi, 1 6 i 6 n,
of the arrangement Ai of {s1, . . . , si} that contains x.

As a third data structure, maintain a history dag (directed acyclic graph) on all
trapezoids that appeared at some point during the construction. For each trapezoid,
store the (at most four) segments that define it. The root of this dag corresponds to the
entire plane and has no segments associated to it.

Those trapezoids that are part of the current face fi appear as active leaves in
the history dag. There are two more categories of vertices: Either the trapezoid was
destroyed at some step by a segment crossing it; in this case, it is an interior vertex of
the history dag and stores links to the (at most four) new trapezoids that replaced it. Or
the trapezoid was cut off at some step by a segment that did not cross it but excluded it
from the face containing x; these vertices are called inactive leaves and they will remain
so for the rest of the construction.

Insertion of a segment sr+1 comprises the following steps.

1. Find the cells of the trapezoidal map f∗r of fr that sr+1 intersects by propagating
sr+1 down the history dag.

2. Trace sr+1 through the active cells found in Step 1. For each split, store the new
trapezoids with the old one that is replaced.

Wherever in a split sr+1 connects two segments sj and sk, join the components of
sj and sk in the union find data structure. If they were in the same component
already, then fr is split into two faces. Determine which trapezoids are cut off
from fr+1 at this point by alternately exploring both components using the DCEL
structure. (Start two depth-first searches one each from the two local trapezoids
incident to sr+1. Proceed in both searches alternately until one is finished. Mark

1For more details refer to the book of Agarwal and Sharir [1].

214



Geometry: C&A 2019 D.3. Constructing a single face

all trapezoids as discarded that are in the component that does not contain x.)
In this way, the time spent for the exploration is proportional to the number of
trapezoids discarded and every trapezoid can be discarded at most once.

3. Update the history dag using the information stored during splits. This is done
only after all splits have been processed in order to avoid updating trapezoids that
are discarded in this step.

The analysis is completely analogous to the case where the whole arrangement is
constructed, except for the expected number of trapezoids created during the algorithm.
Recall that any potential trapezoid τ is defined by at most four segments from S. Denote
by tr the expected number of trapezoids created by the algorithm after insertion of
s1, . . . , sr. Then in order for τ to be created at a certain step of the algorithm, one of
these defining segments has to be inserted last. Therefore,

Pr[τ is created by inserting sr] 6
4

r
Pr[τ appears in f∗r]

and

tr =
∑
τ

Pr[τ is created in one of the first r steps]

6
∑
τ

r∑
i=1

4

i
Pr[τ appears in f∗i ]

=

r∑
i=1

4

i

∑
τ

Pr[τ appears in f∗i ]

Theorem 8.34

6
r∑
i=1

4

i
O(λ3(i))

6
r∑
i=1

4

i
ciα(i) = 4c

r∑
i=1

α(i) 6 4crα(r) = O(λ3(r)) .

Using the notation of the configuration space framework, the expected number of
conflicts is bounded from above by

n−1∑
r=1

(k1 − k2 + k3) 6 16(n− 1) + 12n

n−1∑
r=1

λ3(r+ 1)

r(r+ 1)

6 16(n− 1) + 12

n−1∑
r=1

n

r+ 1
λ3(r+ 1)

1

r

6 16(n− 1) + 12

n−1∑
r=1

λ3(n)

r

= 16(n− 1) + 12 λ3(n)Hn−1
= O(λ3(n) logn) .

215



Appendix D. Translational Motion Planning Geometry: C&A 2019

Exercise D.7. Show that the Minkowski sum of two convex polygons P and Q with m
and n vertices, respectively, is a convex polygon with at most m + n edges. Give
an O(m+ n) time algorithm to construct it.

Exercise D.8. Given an ordered set X = (x1, ..., xn) and a weight function w : X→ R+,
show how to construct in O(n) time a binary search tree on X in which xk has depth
O(1+ log(W/w(xk))), for 1 6 k 6 n, where W =

∑n
i=1w(xi).

Questions

78. What is the configuration space model for (translational) motion planning,
and what does it have to do with arrangements (of line segments)? Explain
the working space/configuration space duality and how to model obstacles in con-
figuration space.

79. What is a Minkowski sum?

80. What is the maximum complexity of the Minkowski sum of two polygons?
What if one of them is convex? If both are convex?

81. How can one compute the Minkowski sum of two convex polygons in linear
time?

82. Can one construct a single face of an arrangement (of line segments) more
efficiently compared to constructing the whole arrangement? Explain the state-
ment of Theorem D.5 and give a rough sketch of the proof.

References

[1] Pankaj K. Agarwal and Micha Sharir, Davenport-Schinzel sequences and their
geometric applications, Cambridge University Press, New York, NY, 1995.

216


	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face


