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Appendix C

Trapezoidal Maps

In this section, we will see another application of randomized incremental construction
in the abstract configuration space framework. At the same time, this will give us an
efficient algorithm for solving the general problem of point location, as well as a faster
algorithm for computing all intersections between a given set of line segments.

C.1 The Trapezoidal Map

To start with, let us introduce the concept of a trapezoidal map.
We are given a set S = {s1, . . . , sn} of line segments in the plane (not necessarily

disjoint). We make several general position assumptions.
We assume that no two segment endpoints and intersection points have the same

x-coordinate. As an exception, we do allow several segments to share an endpoint. We
also assume that no line segment is vertical, that any two line segments intersect in at
most one point (which is a common endpoint, or a proper crossing), and that no three
line segments have a common point. Finally, we assume that si ⊆ [0, 1]2 for all i (which
can be achieved by scaling the coordinates of the segments accordingly).

Definition C.1. The trapezoidal map of S is the partition of [0, 1]2 into vertices, edges,
and faces (called trapezoids), obtained as follows. Every segment endpoint and point
of intersection between segments gets connected by two vertical extensions with the
next feature below and above, where a feature is either another line segment or an
edge of the bounding box [0, 1]2.

Figure C.1 gives an example.
(The general-position assumptions are made only for convenience and simplicity of

the presentation. The various degeneracies can be handled without too much trouble,
though we will not get into the details.)

The trapezoids of the trapezoidal map are “true” trapezoids (quadrangles with two
parallel vertical sides), and triangles (which may be considered as degenerate trapezoids).
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Figure C.1: The trapezoidal map of five line segments (depicted in bold)

C.2 Applications of trapezoidal maps

In this chapter we will see two applications of trapezoidal maps (there are others):

1. Point location: Given a set of n segments in the plane, we want to preprocess them
in order to answer point-location queries: given a point p, return the cell (connected
component of the complement of the segments) that contains p (see Figure C.2).
This is a more powerful alternative to Kirkpatrick’s algorithm that handles only
triangulations, and which is treated in Section 7.5. The preprocessing constructs
the trapezoidal map of the segments (Figure C.3) in expected time O(n logn+K),
where K is the number of intersections between the input segments; the query time
will be O(logn) in expectation.

2. Line segment intersection: Given a set of n segments, we will report all segment
intersections in expected time O(n logn + K). This is a faster alternative to the
classical line-sweep algorithm, which takes time O((n+ K) logn).

C.3 Incremental Construction of the Trapezoidal Map

We can construct the trapezoidal map by inserting the segments one by one, in random
order, always maintaining the trapezoidal map of the segments inserted so far. In order
to perform manipulations efficiently, we can represent the current trapezoidal map as a
doubly-connected edge list (see Section 2.2.1), for example.
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Figure C.2: The general point location problem defined by a set of (possibly inter-
secting) line segments. In this example, the segments partition the plane
into 5 cells.
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Figure C.3: The trapezoidal map is a refinement of the partition of the plane into
cells. For example, cell 3 is a union of five trapezoids.
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Suppose that we have already inserted segments s1, . . . , sr−1, and that the resulting
trapezoidal map Tr−1 looks like in Figure C.1. Now we insert segment sr (see Figure C.4).

Figure C.4: A new segment (dashed) is to be inserted

Here are the four steps that we need to do in order to construct Tr.

1. Find the trapezoid �0 of Tr−1 that contains the left endpoint of sr.

2. Trace sr through Tr−1 until the trapezoid containing the right endpoint of sr is
found. To get from the current trapezoid � to the next one, traverse the boundary
of � until the edge is found through which sr leaves �.

3. Split the trapezoids intersected by sr. A trapezoid � may get replaced by

� two new trapezoids (if sr intersects two vertical extensions of �);
� three new trapezoids (if sr intersects one vertical extension of �);
� four new trapezoids (if sr intersects no vertical extension of �).

4. Merge trapezoids by removing parts of vertical extensions that do not belong to Tr
anymore.

Figure C.5 illustrates the Trace and Split steps. s6 intersects 5 trapezoids, and they
are being split into 3, 3, 4, 3, and 3 trapezoids, respectively.

The Merge step is shown in Figure C.6. In the example, there are two vertical edges
that need to be removed (indicated with a cross) because they come from vertical exten-
sions that are cut off by the new segment. In both cases, the two trapezoids to the left
and right of the removed edge are being merged into one trapezoid (drawn shaded).
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Figure C.5: The Trace and Split steps

Figure C.6: The Merge steps
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C.4 Using trapezoidal maps for point location

Recall that in the point location problem we want to preprocess a given set S of seg-
ments in order to answer subsequent point-location queries: S partitions the plane into
connected cells and we want to know, given a query point q, to which cell q belongs,
see Figure C.2.

Note that the trapezoidal map of S is a refinement of the partition of the plane into
cells, in the sense that a cell might be partitioned into several trapezoids, but every
trapezoid belongs to a single cell, see Figure C.3. Thus, once the trapezoidal map of S is
constructed, we can easily “glue together" trapezoids that touch along their vertical sides,
obtaining the original cells. Then we can answer point-location queries using the same
routine that performs the Find step (whose implementation will be described below).

C.5 Analysis of the incremental construction

In order to analyze the runtime of the incremental construction, we insert the segments
in random order, and we employ the configuration space framework. We also implement
the Find step in such a way that the analysis boils down to conflict counting, just as for
the Delaunay triangulation.

C.5.1 Defining The Right Configurations

Recall that a configuration space is a quadruple S = (X,Π,D,K), where X is the ground
set, Π is the set of configurations, D is a mapping that assigns to each configuration its
defining elements (“generators”), and K is a mapping that assigns to each configuration
its conflict elements (“killers”).

It seems natural to choose X = S, the set of segments, and to define Π as the set
of all possible trapezoids that could appear in the trapezoidal map of some subset of
segments. Indeed, this satisfies one important property of configuration spaces: for each
configuration, the number of generators is constant.

Lemma C.2. For every trapezoid � in the trapezoidal map of R ⊆ S, there exists a set
D ⊆ R of at most four segments, such that � is in the trapezoidal map of D.

Proof. By our general position assumption, each non-vertical side of � is a subset of a
unique segment in R, and each vertical side of � is induced by a unique (left or right)
endpoint, or by the intersection of two unique segments. In the latter case, one of these
segments also contributes a non-vertical side, and in the former case, we attribute the
endpoint to the “topmost” segment with that (left or right) endpoint. It follows that
there is a set of at most four segments whose trapezoidal map already contains �.

But there is a problem with this definition of configurations. Recall that we can apply
the general configuration space analysis only if
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(i) the cost of updating Tr−1 to Tr is proportional to the structural change, the
number of configurations in Tr \ Tr−1; and

(ii) the expected cost of all Find operations during the randomized incremental con-
struction is proportional to the expected number of conflicts. (This is the “conflict
counting” part.)

Here we see that already (i) fails. During the Trace step, we traverse the boundary of
each trapezoid intersected by sr in order to find the next trapezoid. Even if sr intersects
only a small number of trapezoids (so that the structural change is small), the traversals
may take very long. This is due to the fact that a trapezoid can be incident to a large
number of edges. Consider the trapezoid labeled � in Figure C.7. It has many incident
vertical extensions from above. Tracing a segment through such a trapezoid takes time
that we cannot charge to the structural change.

Figure C.7: Trapezoids may have arbitrarily large complexity

To deal with this, we slightly adapt our notion of configuration.

Definition C.3. Let Π be the set of all trapezoids together with at most one incident
vertical edge (“trapezoids with tail”) that appear in the trapezoidal map of some
subset of X = S, see Figure C.8. A trapezoid without any incident vertical edge is
also considered a trapezoid with tail.

Figure C.8: A trapezoid with tail is a trapezoid together with at most one vertical
edge attached to its upper or its lower segment.

As it turns out, we still have constantly many generators.
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Lemma C.4. For every trapezoid with tail � in the trapezoidal map of R ⊆ S, there
exists a set D ⊆ R of at most six segments, such that � is in the trapezoidal map
of D.

Proof. We already know from Lemma C.2 that the trapezoid without tail has at most
4 generators. And since the tail is induced by a unique segment endpoint or by the
intersection of a unique pair of segments, the claim follows.

Here is the complete specification of our configuration space S = (X,Π,D,K).

Definition C.5. Let X = S be the set of segments, and Π the set of all trapezoids with
tail. For each trapezoid with tail �, D(�) is the set of at most 6 generators. K(�)
is the set of all segments that intersect � in the interior of the trapezoid, or cut off
some part of the tail, or replace the topmost generator of the left or right side, see
Figure C.9.

Then S = (X,Π,D,K) is a configuration space of dimension at most 6, by Lemma C.4.
The only additional property that we need to check is that D(�) ∩ K(�) = ∅ for all
trapezoids with tail, but this is clear since no generator of � properly intersects the
trapezoid of � or cuts off part of its tail.

Figure C.9: A trapezoid with tail � is in conflict with a segment s (dashed) if s
intersects � in the interior of the trapezoid (left), or cuts off part of the
tail (middle), or is a new topmost segment generating a vertical side.

C.5.2 Update Cost

Now we can argue that the update cost can be bounded by the structural change. We
employ the same trick as for Delaunay triangulations. We prove that the update cost
is in each step r − 1 → r proportional to the number of configurations that are being
destroyed. Over the whole algorithm, we cannot destroy more configurations than we
create, so the bound that we get is also a bound in terms of the overall structural change.

Lemma C.6. In updating Tr−1 to Tr, the steps Trace, Split, and Merge can be performed
in time proportional to the number of trapezoids with tail in Tr−1 \ Tr.
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Proof. By definition, the complexity (number of edges) of a trapezoid is proportional
to the number of trapezoids with tail that share this trapezoid. This means, the cost of
traversing the trapezoid can be charged to the trapezoids with tail containing it, and all
of them will be destroyed (this includes the trapezoids with tail that just change their
left or right generator; in the configuration space, this is also a destruction). This takes
care of the Trace step. The Split and Merge steps can be done within the same asymptotic
time bounds since they can be performed by traversing the boundaries of all intersected
trapezoids a constant number of times each. For efficiently doing the manipulations on
the trapezoidal map, we can for example represent it using a doubly-connected edge
list.

We can now employ the general configuration space analysis to bound the expected
structural change throughout the randomized incremental construction; as previously
shown, this asymptotically bounds the expected cost of the Trace, Split, and Merge steps
throughout the algorithm. Let us recall the general bound.

Theorem C.7. Let S = (X,Π,D,K) be a configuration space of fixed dimension with
|X| = n. The expected number of configurations that are created throughout the
algorithm is bounded by

O

(
n∑
r=1

tr

r

)
,

where tr is the expected size of Tr, the expected number of active configurations
after r insertion steps.

C.5.3 The History Graph

Here is how we realize the Find step (as well as the point-location queries for our point-
location application). It is a straightforward history graph approach as for Delaunay
triangulations. Every trapezoid that we ever create is a node in the history graph;
whenever a trapezoid is destroyed, we add outgoing edges to its (at most four) successor
trapezoids. Note that trapezoids are destroyed during the steps Split and Merge. In the
latter step, every destroyed trapezoid has only one successor trapezoid, namely the one
it is merged into. It follows that we can prune the nodes of the “ephemeral” trapezoids
that exist only between the Split and Merge steps. What we get is a history graph of
degree at most 4, such that every non-leaf node corresponds to a trapezoid in Tr−1 \ Tr,
for some r.

C.5.4 Cost of the Find step

We can use the history graph for point location during the Find step. Given a segment
endpoint p, we start from the bounding box (the unique trapezoid with no generators)
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that is certain to contain p. Since for every trapezoid in the history graph, its area is
covered by the at most four successor trapezoids, we can simply traverse the history
graph along directed edges until we reach a leaf that contains p. This leaf corresponds to
the trapezoid of the current trapezoidal map containing p. By the outdegree-4-property,
the cost of the traversal is proportional to the length of the path that we traverse.

Here is the crucial observation that allows us to reduce the analysis of the Find step
to “conflict counting”. Note that this is is precisely what we also did for Delaunay
triangulations, except that there, we had to deal explicitly with “ephemeral” triangles.

Recall Definition B.5, according to which a conflict is a pair (�, s) where � is a
trapezoid with tail, contained in some intermediate trapezoidal map, and s ∈ K(�).

Lemma C.8. During a run of the incremental construction algorithm for the trape-
zoidal map, the total number of history graph nodes traversed during all Find steps
is bounded by the number of conflicts during the run.

Proof. Whenever we traverse a node (during insertion of segment sr, say), the node
corresponds to a trapezoid � (which we also consider as a trapezoid with tail) in some
set Ts, s < r, such that p ∈ �, where p is the left endpoint of the segment sr. We can
therefore uniquely identify this edge with the conflict (�, sr). The statement follows.

Now we can use the configuration space analysis that precisely bounds the expected
number of conflicts, and therefore the expected cost of the Find steps over the whole
algorithm. Let us recapitulate the bound.

Theorem C.9. Let S = (X,Π,D,K) be a configuration space of fixed dimension d with
|X| = n. The expected number of conflicts during randomized incremental construc-
tion of Tn is bounded by

O

(
n

n∑
r=1

tr

r2

)
,

where tr is as before the expected size of Tr.

C.5.5 Applying the General Bounds

Let us now apply Theorem C.7 and Theorem C.9 to our concrete situation of trapezoidal
maps. What we obviously need to determine for that is the quantity tr, the expected
number of active configurations after r insertion steps.

Recall that the configurations are the trapezoids with tail that exist at this point.
The first step is easy.

Observation C.10. In every trapezoidal map, the number of trapezoids with tail is
proportional to the number vertices.
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Proof. Every trapezoid with tail that actually has a tail can be charged to the vertex of
the trapezoidal map on the “trapezoid side” of the tail. No vertex can be charged twice
in this way. The trapezoids with no tail are exactly the faces of the trapezoidal map,
and since the trapezoidal map is a planar graph, their number is also proportional to the
number vertices.

Using this observation, we have therefore reduced the problem of computing tr to the
problem of computing the expected number of vertices in Tr. To count the latter, we
note that every segment endpoint and every segment intersection generates 3 vertices:
one at the point itself, and two where the vertical extensions hit another feature. Here,
we are sweeping the 4 bounding box vertices under the rug.

Observation C.11. In every trapezoidal map of r segments, the number of vertices is

6r+ 3k,

where k is the number of pairwise intersections between the r segments.

So far, we have not used the fact that we have a random insertion order, but this
comes next.

Lemma C.12. Let K be the total number of pairwise intersections between segments
in S, and let kr be the random variable for the expected number of pairwise in-
tersections between the first r segments inserted during randomized incremental
construction. Then

kr = K

(
n−2
r−2

)(
n
r

) = K
r(r− 1)

n(n− 1)
.

Proof. Let us consider the intersection point of two fixed segments s and s ′. This in-
tersection point appears in Tr if and only both s and s ′ are among the first r segments.
There are

(
n
r

)
ways of choosing the set of r segments (and all choices have the same prob-

ability); since the number of r-element sets containing s and s ′ is
(
n−2
r−2

)
, the probability

for the intersection point to appear is(
n−2
r−2

)(
n
r

) =
r(r− 1)

n(n− 1)
.

Summing this up over all K intersection points, and using linearity of expectation, the
statement follows.

From Observation C.10, Observation C.11 and Lemma C.12, we obtain the following

Corollary C.13. The expected number tr of active configurations after r insertion steps
is

tr = O

(
r+ K

r(r− 1)

n2

)
.
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Plugging this into Theorem C.7 and Theorem C.9, we obtain the following final

Theorem C.14. Let S be a set of n segments in the plane, with a total of K pairwise
intersections. The randomized incremental construction computes the trapezoidal
map of S in time

O(n logn+ K).

Proof. We already know that the expected update cost (subsuming steps Trace, Split, and
Merge) is proportional to the expected overall structural change, which by Theorem C.7
is

O

(
n∑
r=1

tr

r

)
= O(n) +O

(
K

n2

n∑
r=1

r

)
= O(n+ K).

We further know that the expected point location cost (subsuming step Find) is pro-
portional to the overall expected number of conflicts which by Theorem C.9 is

O

(
n

n∑
r=1

tr

r2

)
= O(n logn) +O

(
K

n

n∑
r=1

1

)
= O(n logn+ K).

C.6 Analysis of the point location

Finally, we return to the application of trapezoidal maps for point location. We make
precise what we mean by saying that “point-location queries are handled in O(logn)
expected time", and we prove our claim.

Lemma C.15. Let S = {s1, . . . , sn} be any set of n segments. Then there exists a
constant c > 0 such that, with high probability (meaning, with probability tending
to 1 as n→∞), the history graph produced by the random incremental construction
answers every possible point-location query in time at most c logn.

Note that our only randomness assumption is over the random permutation of S
chosen at the beginning of the incremental construction. We do not make any randomness
assumption on the given set of segments.

The proof of Lemma C.15 is by a typical application of Chernoff’s bound followed by
the union bound.

Recall (or please meet) Chernoff’s bound:

Lemma C.16. Let X1, X2, . . . , Xn be independent 0/1 random variables, and let X =
X1 + · · ·+ Xn. Let pi = Pr[Xi = 1], and let µ = E[X] = p1 + · · ·+ pn. Then,

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ
for every 0 < δ < 1;

Pr[X > (1+ δ)µ] <

(
eδ

(1+ δ)1+δ

)µ
for every δ > 0.
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The important thing to note is that e−δ/(1−δ)1−δ as well as eδ/(1+δ)1+δ are strictly
less than 1 for every fixed δ > 0, and decrease with increasing δ.

Now back to the proof of Lemma C.15:

Proof. First note that, even though there are infinitely many possible query points, there
is only a finite number of combinatorially distinct possible queries : If two query points
lie together in every trapezoid (either both inside or both outside), among all possible
trapezoids defined by segments of S, then there is no difference in querying one point
versus querying the other, as far as the algorithm is concerned. Since there are O(n4)
possible trapezoids (recall that each trapezoid is defined by at most four segments), there
are only O(n4) queries we have to consider.

Fix a query point q. We will show that there exists a large enough constant c > 0,
such that only with probability at most O(n−5) does the query on q take more than
c logn steps.

Let s1, s2, . . . , sn be the random order of the segments chosen by the algorithm, and
for 1 6 r 6 n let Tr be the trapezoidal map generated by the first r segments. Note
that for every r, the point q belongs to exactly one trapezoid of Tr. The question is how
many times the trapezoid containing q changes during the insertion of the segments,
since these are exactly the trapezoids of the history graph that will be visited when we
do a point-location query on q.

For 1 6 r 6 n, let Ar be the event that the trapezoid containing q changes from
Tr−1 to Tr. What is the probability of Ar? As in Section B.3, we “run the movie
backwards": To obtain Tr−1 from Tr, we delete a random segment from among s1, . . . , sr;
the probability that the trapezoid containing q in Tr is destroyed is at most 4/r, since
this trapezoid is defined by at most four segments. Thus, Pr[Ar] 6 4/r, independently
of every other As, s 6= r.

For each r let Xr be a random variable equal to 1 ifAr occurs, and equal to 0 otherwise.
We are interested in the quantity X = X1 + · · · + Xr. Then µ = E[X] =

∑n
r=1 Pr[Ar] =

4 lnn + O(1). Applying Chernoff’s bound with δ = 2 (it is just a matter of choosing δ
large enough), we get

Pr[X > (1+ δ)µ] < 0.273µ = O(0.2734 lnn) = O(n−5.19),

so we can take our c to be anything larger than 4(1+ δ) = 12.
Thus, for every fixed query q, the probability of a “bad event" (a permutation that

results in a long query time) is O(n−5). Since there are only O(n4) possible choices for
q, by the union bound the probability of some q having a bad event is O(1/n), which
tends to zero with n.

C.7 The trapezoidal map of a simple polygon

An important special case of the trapezoidal map is obtained when the input segments
form a simple polygon; seee Figure C.10. In this case, we are mostly interested in the
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part of the trapezoidal map inside the polygon, since that parts allows us to obtain a
triangulation of the polygon in linear time.

Figure C.10: The trapezoidal map inside a simple polygon

To get a triangulation, we first go through all trapezoids; we know that each trapezoid
must have one polygon vertex on its left and one on its right boundary (due to general
position, there is actually exactly one vertex on each of these two boundaries). Whenever
the segment connecting these two vertices is not an edge of the polygon, we have a
diagonal, and we insert this diagonal. Once we have done this for all trapezoids, it is
easily seen that we have obtained a subdivision of the polygon into x-monotone polygons,
each of which can be triangualated in linear time; see Exercise C.24. This immediately
allows us to improve over the statement of Exercise 3.17.

Corollary C.17. A simple polygon with n vertices can be triangulated in expected time
O(n logn).

Proof. By Theorem C.14, the trapezoidal decomposition induced by the segments of a
simple polygon can be combuted in expected time O(n logn), since there are no intersec-
tions between the segments. Using the above linear-time triangulation algorithm from
the trapezoidal map, the result follows.

The goal of this section is to further improve this bound and show the following
result.

Theorem C.18. Let S = {s1, s2, . . . , sn} be the set of edges of an n-vertex simple polygon,
in counterclockwise order around the polygon. The trapezoidal map induced by S
(and thus also a triangulation of S) can be computed in exptected time O(n log∗ n).
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Informally speaking, the function log∗ n is the number of times we have to iterate the
operation of taking (binary) logarithms, before we get from n down to 1. Formally, we
define

log(h)(n) =
{
n, if h = 0

log(h−1)(logn), otherwise

as the h-times iterated logarithm, and for n > 1 we set

log∗ n = max{h : log(h) n > 1}.

For example, we have

log∗(265536) = 5,

meaning that for all practical purposes, log∗ n 6 5; a bound of O(n log∗ n) is therefore
very close to a linear bound.

History flattening. Recall that the bottleneck in the randomized incremental construction
is the Find step. Using the special structure we have (the segments form a simple polygon
in this order), we can speed up this step. Suppose that at some point during incremental
construction, we have built the trapezoidal map of a subset of r segments, along with
the history graph. We now flatten the history by removing all trapezoids that are not in
Tr, the current trapezoidal map. To allow for point location also in the future, we need
an “entry point” into the flattened history, for every segment not inserted so far (the old
entry point for all segments was the bounding unit square [0, 1]2).

Lemma C.19. Let S be the set of edges of an n-vertex simple polygon, in counterclock-
wise order around the polygon. For R ⊆ S, let T(R) be the trapezoidal map induced
by R. In time proportional to n plus the number of conflicts between trapezoids in
T(R) and segments in S \ R, we can find for all segment s ∈ S a trapezoid of T(R)
that contains an endpoint of s.

Proof. In a trivial manner (and in time O(n)), we do this for the first segment s1 and
its first endpoint p1. Knowing the trapezoid �i containing pi, the first endpoint of si,
we trace the segment si through T(R) until pi+1, its other endpoint and first endpoint
of si+1 is found, along with the trapezoid �i+1 containing it. This is precisely what we
also did in the Trace Step 2 of the incremental construction in Section C.3.

By Lemma C.6 (pretending that we are about to insert si), the cost of tracing si
through T(R) is proportional to the size of T(R) \ T(R ∪ {si}), equivalently, the number
of conflicts between trapezoids in T(R) and si. The statement follows by adding up the
costs for all i.

This is exactly where the special structure of our segments forming a polygon helps.
After locating pi, we can locate the next endpoint pi+1 in time proportional to the
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structural change that the insertion of si would cause. We completely avoid the traversal
of old history trapezoids that would be necessary for an efficient location of pi+1 from
scratch.

Next we show what Lemma C.19 gives us in expectation.

Lemma C.20. Let S be the set of edges of an n-vertex simple polygon, in counter-
clockwise order around the polygon, and let Tr be the trapezoidal map obtained
after inserting r segments in random order. In expected time O(n), we can find for
each segment s not inserted so far a trapezoid of Tr containing an endpoint of s.

Proof. According to Lemma C.19, the expected time is bounded by O(n+ `(r)), where

`(r) =
1(
n
r

) ∑
R⊆S,|R|=r

∑
y∈S\R

|{� ∈ T(R) : y ∈ K(�)}|.

This looks very similar to the bound on the quantity k(r) that we have derived in
Section B.5 to count the expected number of conflicts in general configuration spaces:

k(r) 6
1(
n
r

) ∑
R⊆S,|R|=r

d

r

∑
y∈S\R

|{∆ ∈ T(R) : y ∈ K(∆)}|.

Indeed, the difference is only an additional factor of d
r
in the latter. For k(r), we have

then computed the bound

k(r) 6 k1(r)−k2(r)+k3(r) 6
d

r
(n−r)tr−

d

r
(n−r)tr+1+

d2

r(r+ 1)
(n−r)tr+1, (C.21)

where tr is the expected size of Tr. Hence, to get a bound for `(r), we simply have to
cancel d

r
from all terms to obtain

`(r) 6 (n− r)tr − (n− r)tr+1 +
d

r+ 1
(n− r)tr+1 = O(n),

since tr 6 tr+1 = O(r) in the case of nonintersecting line segments.

The faster algorithm. We proceed as in the regular randomized incremental construction,
except that we frequently and at well-chosen points flatten the history. Let us define

N(h) =

⌈
n

log(h) n

⌉
, 0 6 h 6 log∗ n.

We have N(0) = 1,N(log∗ n) 6 n and N(log∗ n + 1) > n. We insert the segments in
random order, but proceed in log∗ n + 1 rounds. In round h = 1, . . . , log∗ n + 1, we do
the following.
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(i) Flatten the history graph by finding for each segment s not inserted so far a trape-
zoid of the current trapezoidal map containing an endpoint of s.

(ii) Insert the segments N(h − 1) up to N(h) − 1 in the random order, as usual, but
starting from the flat history established in (i).

In the last round, we have N(h) − 1 > n, so we stop with segment n in the random
order.

From Lemma C.20, we know that the expected cost of step (i) over all rounds is
bounded by O(n log∗ n) which is our desired overall bound. It remains to prove that
the same bound also deals with step (ii). We do not have to worry about the overall
expected cost of performing the structural changes in the trapezoidal map: this will be
bounded by O(n), using tr = O(r) and Theorem C.7. It remains to analyze the Find
step, and this is where the history flattening leads to a speedup. Adapting Lemma C.8
and its proof accordingly, we obtain the following.

Lemma C.22. During round h of the fast incremental construction algorithm for the
trapezoidal map, the total number of history graph nodes traversed during all Find
steps is bounded by N(h)−N(h−1)1, plus the number of conflicts between trapezoids
that are created during round h, and segments inserted during round h.

Proof. The history in round h only contains trapezoids that are active at some point in
round h. On the one hand, we have the “root nodes” present immediately after flattening
the history, on the other hand the trapezoids that are created during the round. The
term N(h) −N(h− 1) accounts for the traversals of the root nodes during round h. As
in the proof of Lemma C.8, the traversals of other history graph nodes can be charged to
the number of conflicts between trapezoids that are created during round h and segments
inserted during round h.

To count the expected number of conflicts involving trapezoids created in round h, we
go back to the general configuration space framework once more. With kh(r) being the
expected number of conflicts created in step r, restricted to the ones involving segments
inserted in round h, we need to bound

κ(h) =

N(h)−1∑
r=N(h−1)

kh(r).

As in (C.21), we get

kh(r) 6
d

r
(N(h) − r)tr −

d

r
(N(h) − r)tr+1 +

d2

r(r+ 1)
(N(h) − r)tr+1,

1this amounts to O(n) throughout the algorithm and can therefore be neglected
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where we have replaced n with N(h), due to the fact that we do not need to consider
segments in later rounds. Then tr = O(r) yields

κ(h) 6 O

N(h)

N(h)−1∑
r=N(h−1)

1

r


= O

(
N(h) log

N(h)

N(h− 1)

)
= O

(
N(h) log

log(h−1) n
log(h) n

)
= O

(
N(h) log(h) n

)
= O(n).

It follows that step (ii) of the fast algorithm also requires expected linear time per
round, and Theorem C.18 follows.

Exercise C.23. a) You are given a set of n pairwise disjoint line segments. Find
an algorithm to answer vertical ray shooting queries in O(logn) time. That is,
preprocess the data such that given a query point q you can report in O(logn)
time which segment is the first above q (or if there are none). Analyze the
running time and the space consumption of the preprocessing.

b) What happens if we allow intersections of the line segments? Explain in a
few words how you have to adapt your solution and how the time and space
complexity would change.

Exercise C.24. Show that an n-vertex x-monotone polygon can be triangulated in time
O(n). (As usual a polygon is given as a list of its vertices in counterclockwise order.
A polygon P is called x-monotone if for all vertical lines `, the intersection ` ∩ P
has at most one component.)

Questions

68. What is the definition of a trapezoidal map?

69. How does the random incremental construction of a trapezoidal map proceed?
What are the main steps to be executed at each iteration?

70. How can trapezoidal maps be used for the point location problem?

71. What is the configuration space framework? Recall Section B.3.

72. What is a naive way of defining a configuration in the case of trapezoids, and
why does it fail?

73. What is a more successful way of defining a configuration? Why do things
work in this case?
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74. What is the history graph, and how is it used to answer point location queries?

75. What is the performance of the random incremental construction of the trape-
zoidal map when used for the point-location problem? Be precise!

76. What probabilistic techniques are used in proving this performance bound?

77. How can you speed up the randomized incremental construction in the case
where the input segments from a simple polygon? Sketch the necessary changes
to the algorithm, and how they affect the analysis.
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