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Appendix B

The Configuration Space Framework

In Section 6.1, we have discussed the incremental construction of the Delaunay trian-
gulation of a finite point set. In this lecture, we want to analyze the runtime of this
algorithm if the insertion order is chosen uniformly at random among all insertion or-
ders. We will do the analysis not directly for the problem of constructing the Delaunay
triangulation but in a somewhat more abstract framework, with the goal of reusing the
analysis for other problems.

Throughout this lecture, we again assume general position: no three points on a line,
no four on a circle.

B.1 The Delaunay triangulation — an abstract view

The incremental construction constructs and destroys triangles. In this section, we want
to take a closer look at these triangles, and we want to understand exactly when a triangle
is “there”.

Lemma B.1. Given three points p, q, r ∈ R, the triangle ∆(p, q, r) with vertices p, q, r
is a triangle of DT(R) if and only if the circumcircle of ∆(p, q, r) is empty of points
from R.

Proof. The “only if” direction follows from the definition of a Delaunay triangulation
(Definition 5.8). The “if” direction is a consequence of general position and Lemma 5.18:
if the circumcircle C of ∆(p, q, r) is empty of points from R, then all the three edges
pq, qr, pr are easily seen to be in the Delaunay graph of R. C being empty also implies
that the triangle ∆(p, q, r) is empty, and hence it forms a triangle of DT(R).

Next we develop a somewhat more abstract view of DT(R).

Definition B.2.

(i) For all p, q, r ∈ P, the triangle ∆ = ∆(p, q, r) is called a configuration. The
points p, q and r are called the defining elements of ∆.
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(ii) A configuration ∆ is in conflict with a point s ∈ P if s is strictly inside the
circumcircle of ∆. In this case, the pair (∆, s) is called a conflict.

(iii) A configuration ∆ is called active w.r.t. R ⊆ P if (a) the defining elements of
∆ are in R, and (b) if ∆ is not in conflict with any element of R.

According to this definition and Lemma B.1, DT(R) consists of exactly the configu-
rations that are active w.r.t. R. Moreover, if we consider DT(R) and DT(R ∪ {s}) as sets
of configurations, we can exactly say how these two sets differ.

There are the configurations in DT(R) that are not in conflict with s. These config-
urations are still in DT(R ∪ {s}). The configurations of DT(R) that are in conflict with
s will be removed when going from R to R ∪ {s}. Finally, DT(R ∪ {s}) contains some new
configurations, all of which must have s in their defining set. According to Lemma B.1,
it cannot happen that we get a new configuration without s in its defining set, as such
a configuration would have been present in DT(R) already.

B.2 Configuration Spaces

Here is the abstract framework that generalizes the previous configuration view of the
Delaunay triangulation.

Definition B.3. Let X (the ground set) and Π (the set of configurations) be finite sets.
Furthermore, let

D : Π→ 2X

be a function that assigns to every configuration ∆ a set of defining elements D(∆).
We assume that only a constant number of configurations have the same defining
elements. Let

K : Π→ 2X

be a function that assigns to every configuration ∆ a set of elements in conflict with
∆ (the “killer” elements). We stipulate that D(∆) ∩ K(∆) = ∅ for all ∆ ∈ Π.

Then the quadruple S = (X,Π,D,K) is called a configuration space. The number

d = d(S) := max
∆∈Π

|D(∆)|

is called the dimension of S.
Given R ⊆ X, a configuration ∆ is called active w.r.t. R if

D(∆) ⊆ R and K(∆) ∩ R = ∅,

i.e. if all defining elements are in R but no element of R is in conflict with ∆. The
set of active configurations w.r.t. R is denoted by TS(R), where we drop the subscript
if the configuration space is clear from the context.
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In case of the Delaunay triangulation, we set X = P (the input point set). Π consists
of all triangles ∆ = ∆(p, q, r) spanned by three points p, q, r ∈ X∪ {a, b, c}, where a, b, c
are the three artificial far-away points. We set D(∆) := {p, q, r}∩X. The set K(∆) consists
of all points strictly inside the circumcircle of ∆. The resulting configuration space has
dimension 3, and the technical condition that only a constant number of configurations
share the defining set is satisfied as well. In fact, every set of three points defines a
unique configuration (triangle) in this case. A set of two points or one point defines
three triangles (we have to add one or two artificial points which can be done in three
ways). The empty set defines one triangle, the initial triangle consisting of just the three
artificial points.

Furthermore, in the setting of the Delaunay triangulation, a configuration is active
w.r.t. R if it is in DT(R ∪ {a, b, c}), i.e. we have T(R) = DT(R ∪ {a, b, c}).

B.3 Expected structural change

Let us fix a configuration space S = (X,Π,D,K) for the remainder of this lecture. We
can also interpret the incremental construction in S. Given R ⊆ X and s ∈ X \ R, we
want to update T(R) to T(R ∪ {s}). What is the number of new configurations that arise
during this step? For the case of Delaunay triangulations, this is the relevant question
when we want to bound the number of Lawson flips during one update step, since this
number is exactly the number of new configurations minus three.

Here is the general picture.

Definition B.4. For Q ⊆ X and s ∈ Q, deg(s,Q) is defined as the number of configu-
rations of T(Q) that have s in their defining set.

With this, we can say that the number of new configurations in going from T(R) to
T(R∪{s}) is precisely deg(s, R∪{s}), since the new configurations are by definition exactly
the ones that have s in their defining set.

Now the random insertion order comes in for the first time: what is

E(deg(s, R ∪ {s})),

averaged over all insertion orders? In such a random insertion order, R is a random r-
element subset of X (when we are about to insert the (r+1)-st element), and s is a random
element of X \ R. Let Tr be the “random variable” for the set of active configurations
after r insertion steps.

It seems hard to average over all R, but there is a trick: we make a movie of the
randomized incremental construction, and then we watch the movie backwards. What
we see is elements of X being deleted one after another, again in random order. This is
due to the fact that the reverse of a random order is also random. At the point where the
(r+ 1)-st element is being deleted, it is going to be a random element s of the currently
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present (r + 1)-element subset Q. For fixed Q, the expected degree of s is simply the
average degree of an element in Q which is

1

r+ 1

∑
s∈Q

deg(s,Q) 6
d

r+ 1
|T(Q)|,

since the sum counts every configuration of T(Q) at most d times. Since Q is a random
(r+ 1)-element subset, we get

E(deg(s, R ∪ {s})) 6
d

r+ 1
tr+1,

where tr+1 is defined as the expected number of active configurations w.r.t. a random
(r+ 1)-element set.

Here is a more formal derivation that does not use the backwards movie view. It
exploits the bijection

(R, s) 7→ (R ∪ {s}︸ ︷︷ ︸
Q

, s)

between pairs (R, s) with |R| = r and s /∈ R and pairs (Q, s) with |Q| = r+ 1 and s ∈ Q.
Let n = |X|.

E(deg(s, R ∪ {s})) =
1(
n
r

) ∑
R⊆X,|R|=r

1

n− r

∑
s∈X\R

deg(s, R ∪ {s})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

1

n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) 1

n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

1

r+ 1

∑
s∈Q

deg(s,Q)

6
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r+ 1
|T(Q)|

=
d

r+ 1
tr+1.

Thus, the expected number of new active configurations in going from Tr to Tr+1 is
bounded by

d

r+ 1
tr+1,
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where tr+1 is the expected size of Tr+1.
What do we get for Delaunay triangulations? We have d = 3 and tr+1 6 2(r+ 4) − 4

(the maximum number of triangles in a triangulation of r+ 4 points). Hence,

E(deg(s, R ∪ {s})) 6
6r+ 12

r+ 1
≈ 6.

This means that on average, ≈ 3 Lawson flips are done to update DTr (the Delaunay
triangulation after r insertion steps) to DTr+1. Over the whole algorithm, the expected
update cost is thus O(n).

B.4 Bounding location costs by conflict counting

Before we can even update DTr to DTr+1 during the incremental construction of the
Delaunay triangulation, we need to locate the new point s in DTr, meaning that we need
to find the triangle that contains s. We have done this with the history graph: During
the insertion of s we “visit" a sequence of triangles from the history graph, each of which
contains s and was created at some previous iteration k < r.

However, some of these visited triangles are “ephemeral" triangles (recall the discus-
sion at the end of Section 6.2), and they present a problem to the generic analysis we
want to perform. Therefore, we will do a charging scheme, so that all triangles charged
are valid Delaunay triangles.

The charging scheme is as follows: If the visited triangle ∆ is a valid Delaunay triangle
(from some previous iteration), then we simply charge the visit of ∆ during the insertion
of s to the triangle-point pair (∆, s).

If, on the other hand, ∆ is an “ephemeral" triangle, then ∆ was destroyed, together
with some neighbor ∆ ′, by a Lawson flip into another pair ∆ ′′, ∆ ′′′. Note that this
neighbor ∆ ′ was a valid triangle. Thus, in this case we charge the visit of ∆ during the
insertion of s to the pair (∆ ′, s). Observe that s is contained in the circumcircle of ∆ ′,
so s is in conflict with ∆ ′.

This way, we have charged each visit to a triangle in the history graph to a triangle-
point pair of the form (∆, s), such that ∆ is in conflict with s. Furthermore, it is easy to
see that no such pair gets charged more than once.

We define the notion of a conflict in general:

Definition B.5. A conflict is a configuration-element pair (∆, s) where ∆ ∈ Tr for some
r and s ∈ K(∆).

Thus, the running time of the Delaunay algorithm is proportional to the number of
conflicts. We now proceed to derive a bound on the expected number of conflicts in the
generic configuration-space framework.
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B.5 Expected number of conflicts

Since every configuration involved in a conflict has been created in some step r (we
include step 0), the total number of conflicts is

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)|,

where T−1 := ∅. T0 consists of constantly many configurations only (namely those where
the set of defining elements is the empty set), each of which is in conflict with at most
all elements; moreover, no conflict is created in step n. Hence,

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)| = O(n) +

n−1∑
r=1

∑
∆∈Tr\Tr−1

|K(∆)|,

and we will bound the latter quantity. Let

K(r) :=
∑

∆∈Tr\Tr−1

|K(∆)|, r = 1, . . . , n− 1.

and k(r) := E(K(r)) the expected number of conflicts created in step r.

Bounding k(r). We know that Tr arises from a random r-element set R. Fixing R, the
backwards movie view tells us that Tr−1 arises from Tr by deleting a random element s
of R. Thus,

k(r) =
1(
n
r

) ∑
R⊆X,|R|=r

1

r

∑
s∈R

∑
∆∈T(R)\T(R\{s})

|K(∆)|

=
1(
n
r

) ∑
R⊆X,|R|=r

1

r

∑
s∈R

∑
∆∈T(R),s∈D(∆)

|K(∆)|

6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
∆∈T(R)

|K(∆)|,

since in the sum over s ∈ R, every configuration is counted at most d times. Since we
can rewrite∑

∆∈T(R)

|K(∆)| =
∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|,

we thus have

k(r) 6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|.

To estimate this further, here is a simple but crucial
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Lemma B.6. The configurations in T(R) that are not in conflict with y ∈ X\R are the
configurations in T(R ∪ {y}) that do not have y in their defining set; in formulas:

|T(R)|− |{∆ ∈ T(R) : y ∈ K(∆)}| = |T(R ∪ {y})|− deg(y, R ∪ {y}).

The proof is a direct consequence of the definitions: every configuration in T(R) not
in conflict with y is by definition still present in T(R ∪ {y}) and still does not have y in
its defining set. And a configuration in T(R ∪ {y}) with y not in its defining set is by
definition already present in T(R) and already there not in conflict with y.

The lemma implies that

k(r) 6 k1(r) − k2(r) + k3(r),

where

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|,

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|,

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y, R ∪ {y}).

Estimating k1(r). This is really simple.

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|

=
1(
n
r

) ∑
R⊆X,|R|=r

d

r
(n− r)|T(R)|

=
d

r
(n− r)tr.
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Estimating k2(r). For this, we need to employ our earlier (R, y) 7→ (R ∪ {y}, y) bijection
again.

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d
r
(r+ 1)|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r
(n− r)|T(Q)|

=
d

r
(n− r)tr+1

=
d

r+ 1
(n− (r+ 1))tr+1 +

dn

r(r+ 1)
tr+1

= k1(r+ 1) +
dn

r(r+ 1)
tr+1.

Estimating k3(r). This is similar to k2(r) and in addition uses a fact that we have em-
ployed before:

∑
y∈Q deg(y,Q) 6 d|T(Q)|.

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y, R ∪ {y})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

deg(y,Q)

6
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d2

r
|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d2
r
|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

n− r

r+ 1
· d
2

r
|T(Q)|

=
d2

r(r+ 1)
(n− r)tr+1

=
d2n

r(r+ 1)
tr+1 −

d2

r+ 1
tr+1.
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Summing up. Let us recapitulate: the overall expected number of conflicts is O(n) plus

n−1∑
r=1

k(r) 6
n−1∑
r=1

(k1(r) − k2(r) + k3(r)).

Using our previous estimates, k1(2), . . . , k1(n − 1) are canceled by the first terms of
k2(1), . . . , k2(n − 2). The second term of k2(r) can be combined with the first term of
k3(r), so that we get

n−1∑
r=1

(k1(r) − k2(r) + k3(r)) 6 k1(1) − k1(n)︸ ︷︷ ︸
=0

+n

n−1∑
r=1

d(d− 1)

r(r+ 1)
tr+1 −

n−1∑
r=1

d2

r+ 1
tr+1

6 d(n− 1)t1 + d(d− 1)n

n−1∑
r=1

tr+1

r(r+ 1)

= O

(
d2n

n∑
r=1

tr

r2

)
.

The Delaunay case. We have argued that the expected number of conflicts asymptotically
bounds the expected total location cost over all insertion steps. The previous equation
tells us that this cost is proportional to O(n) plus

O

(
9n

n∑
r=1

2(r+ 3) − 4

r2

)
= O

(
n

n∑
r=1

1

r

)
= O(n logn).

Here,

n∑
r=1

1

r
=: Hn

is the n-th Harmonic Number which is known to be approximately lnn.
By going through the abstract framework of configuration spaces, we have thus ana-

lyzed the randomized incremental construction of the Delaunay triangulation of n points.
According to Section B.3, the expected update cost itself is only O(n). The steps dom-
inating the runtime are the location steps via the history graph. According to Section
B.5, all history graph searches (whose number is proportional to the number of conflicts)
can be performed in expected time O(n logn), and this then also bounds the space
requirements of the algorithm.

Exercise B.7. Design and analyze a sorting algorithm based on randomized incremen-
tal construction in configuration spaces. The input is a set S of numbers, and the
output should be the sorted sequence (in increasing order).
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a) Define an appropriate configuration space for the problem! In particular, the
set of active configurations w.r.t. S should represent the desired sorted se-
quence.

b) Provide an efficient implementation of the incremental construction algo-
rithm. “Efficient” means that the runtime of the algorithm is asymptotically
dominated by the number of conflicts.

c) What is the expected number of conflicts (and thus the asymptotic runtime of
your sorting algorithm) for a set S of n numbers?

Questions

63. What is a configuration space? Give a precise definition! What is an active
configuration?

64. How do we get a configuration space from the problem of computing the De-
launay triangulation of a finite point set?

65. How many new active configurations do we get on average when inserting the
r-th element? Provide an answer for configuration spaces in general, and for the
special case of the Delaunay triangulation.

66. What is a conflict? Provide an answer for configuration spaces in general, and
for the special case of the Delaunay triangulation.

67. Explain why counting the expected number of conflicts asymptotically bounds
the cost for the history searches during the randomized incremental construc-
tion of the Delaunay triangulation!
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