
Geometry: Combinatorics & Algorithms, Lecture Notes 2018
geometry.inf.ethz.ch/gca18-6.pdf

Chapter 6

Delaunay Triangulation: Incremental
Construction

In the last lecture, we have learned about the Lawson flip algorithm that computes a
Delaunay triangulation of a given n-point set P ⊆ R2 with O(n2) Lawson flips. One can
actually implement this algorithm to run in O(n2) time, and there are point sets where
it may take Ω(n2) flips.

In this lecture, we will discuss a different algorithm. The final goal is to show that
this algorithm can be implemented to run in O(n logn) time. Throughout this lecture
we assume that P is in general position (no 3 points on a line, no 4 points on a com-
mon circle), so that the Delaunay triangulation is unique (Corollary 5.19). There are
techniques to deal with non-general position, but we don’t discuss them here.

6.1 Incremental construction

The idea is to build the Delaunay triangulation of P by inserting one point after another
according to a random permutation of the remaining vertices, say p1, p2, . . . , pn.

To avoid special cases, we enhance the point set P with three artificial points p0, p−1
and p−2 “far out” such that the convex hull of P ∪ {p0, p−1, p−2} consists only of the
three artificial points. Because the convex hull of the resulting point set is a triangle;
later, we can remove these extra points and their incident edges to obtain DT(P). The
incremental algorithm starts off with the Delaunay triangulation of the three artificial
points which consists of one big triangle enclosing all other points. (In our figures, we
suppress the far-away points, since they are merely a technicality.)

For 1 6 s 6 n, let Ps := {p1, . . . , ps} and P∗s = Ps ∪ {p0, p−1, p−2}. Throughout, we
always maintain the Delaunay triangulation of the point set P∗s−1 containing the points
inserted so far, and when the next point ps comes along, we update the triangulation to
the Delaunay triangulation of P∗s. Let DT(s) denote the Delaunay triangulation of P∗s.

Now assume that we have already built DT(s−1), and we next insert ps. Here is the
outline of the update step.

97

https://geometry.inf.ethz.ch/gca18-6.pdf

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

ps
∆

Figure 6.1: Inserting ps into DT(s− 1): Step 1

1. Find the triangle ∆ = ∆(p, q, r) of DT(s− 1) that contains ps, and replace it with
the three triangles resulting from connecting ps with all three vertices p, q, r; see
Figure 6.1. We now have a triangulation T of P∗s.

2. Perform Lawson flips on T until DT(s) is obtained; see Figure 6.2

ps
∆

ps
∆

ps
∆

ps
∆

Figure 6.2: Inserting ps into DT(s− 1): Step 2

How to organize the Lawson flips. The Lawson flips can be organized quite systematically,
since we always know the candidates for “bad” edges that may still have to be flipped.
Initially (after step 1), only the three edges of ∆ can be bad, since these are the only
edges for which an incident triangle has changed (by inserting ps in Step 1). Each of

98

Geometry: C&A 2019 6.2. The History Graph

the three new edges is good, since the 4 vertices of its two incident triangles are not in
convex position.

Now we have the following invariant (part (a) certainly holds in the first flip):

(a) In every flip, the convex quadrilateral Q in which the flip happens has exactly two
edges incident to ps, and the flip generates a new edge incident to ps.

(b) Only the two edges of Q that are not incident to ps can become bad after the flip.

We will prove part (b) in the next lemma. The invariant then follows since (b) entails
(a) in the next flip. This means that we can maintain a queue of potentially bad edges
that we process in turn. A good edge will be removed from the queue, and a bad edge
will be flipped and replaced according to (b) with two new edges in the queue. In this
way, we never flip edges incident to ps; the next lemma proves that this is correct and
at the same time establishes part (b) of the invariant.

Lemma 6.1. Every edge incident to ps that is created during the update is an edge of
the Delaunay graph of P∗s and thus an edge that will be in DT(s). It easily follows
that edges incident to ps will never become bad during the update step.1

Proof. Let us consider one of the first three new edges, psp, say. Since the triangle
∆ has a circumcircle C strictly containing only ps (∆ is in DT(s − 1)), we can shrink
that circumcircle to a circle C ′ through ps and p with no interior points, see Figure 6.3
(a). This proves that psp is in the Delaunay graph. If pst is an edge created by a flip,
a similar argument works. The flip destroys exactly one triangle ∆ of DT(s − 1). Its
circumcircle C contains ps only, and shrinking it yields an empty circle C ′ through ps
and t. Thus, pst is in the Delaunay graph also in this case.

6.2 The History Graph

What can we say about the performance of the incremental construction? Not much yet.
First of all, we did not specify how we find the triangle ∆ of DT(s − 1) that contains
the point ps to be inserted. Doing this in the obvious way (checking all triangles) is not
good, since already the find steps would then amount to O(n2) work throughout the
whole algorithm. Here is a smarter method, based on the history graph.

Definition 6.2. For a given 1 6 s 6 n, the history graph Hs−1 of P∗s−1 is a directed
acyclic graph whose vertices are all triangles that have ever been created during
the incremental construction of DT(s − 1). There is a directed edge from ∆ to ∆ ′

whenever ∆ has been destroyed during an insertion step, ∆ ′ has been created during
the same insertion step, and ∆ overlaps with ∆ ′ in its interior.

1If such an edge was bad, it could be flipped, but then it would be “gone forever” according to the
lifting map interpretation from the previous lecture.

99

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

ps

p

∆
C′

C

(a) New edge psp incident
to ps created in Step 1

ps

∆

C′

t

C

(b) New edge pst incident
to ps created in Step 2

Figure 6.3: Newly created edges incident to ps are in the Delaunay graph

It follows that the history graph Hs−1 contains triangles of outdegrees 3, 2 and 0.
The ones of outdegree 0 are clearly the triangles of DT(s− 1).

The triangles of outdegree 3 are the ones that have been destroyed during Step 1 of
an insertion. For each such triangle ∆, its three outneighbors are the three new triangles
that have replaced it, see Figure 6.4.

The triangles of outdegree 2 are the ones that have been destroyed during Step 2 of
an insertion. For each such triangle ∆, its two outneighbors are the two new triangles
created during the flip that has destroyed ∆, see Figure 6.5.

The history graph Hs−1 can be built during the incremental construction at asymp-
totically no extra cost; but it may need extra space since it keeps all triangles ever
created. Given the history graph Hs−1, we can search for the triangle ∆ of DT(s − 1)
that contains ps, as follows. We start from the big triangle 4(p0, p−1, p−2); this one
certainly contains ps. Then we follow a directed path in the history graph. If the current
triangle still has outneighbors, we find the unique outneighbor containing ps and con-
tinue the search with this neighbor. If the current triangle has no outneighbors anymore,
it is in DT(s − 1) and contains ps—we are done. Thus, the complexity of finding the
triangle containing ps is linear on the length of the path followed in the history graph.

Types of triangles in the history graph. After each insertion of a point ps, several triangles
are created and added to the history graph. It is important to note that these triangles
come in two types: Some of them are valid Delaunay triangles of DT(s), and they survive
to the next stage of the incremental construction. Other triangles are immediately
destroyed by subsequent Lawson flips, because they are not Delaunay triangles of DT(S).

Note that, whenever a Lawson flip is performed, one of the two triangles destroyed is
always a “valid” triangle from a previous iteration, and the other one is an “ephemeral"
triangle that was created at this iteration. The ephemeral triangle is always the one that
has ps, the newly inserted point, as a vertex.

100

Geometry: C&A 2019 6.2. The History Graph

�

�

ps

ps

ps ps
ps

Figure 6.4: The history graph: one triangle gets replaced by three triangles

ps

ps
ps

ps

Figure 6.5: The history graph: two triangles get replaced by two triangles

101

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

6.3 Analysis of the algorithm

To formalize the above intuition, we observe the following.

Observation 6.3. Given DT(s − 1) and the triangle ∆ of DT(s − 1) that contains ps,
we can build DT(s) in time proportional to the degree of ps in DT(s), which is the
number of triangles of DT(s) containing ps. Moreover, the total number of triangles
created throughout this insertion is at most twice the degree of ps in DT(s).

Indeed, since every flip generates exactly one new triangle incident to ps, the number
of flips is the degree of ps minus three. Step 1 of the update takes constant time, and
since also every flip can be implemented in constant time, the observation follows.

Using this result, we can prove the following bound on the expected size of the history
graph.

Lemma 6.4. The expected number of nodes in the history graph is at most 9n+ 1.

Proof. Before start inserting points of P, our history graph consists only of the artificial
triangle 4(p0p−1p−2). In the s-th iteration of the algorithm, we insert the point ps. At
this point, we first split the triangle 4(pipjpk) containing ps into three new triangles,
i, j, k < s. This splitting adds three new vertices to the history graph, and three new
Delaunay edges incident to ps, namely pspi, pspj and pspk. In addition, we use Lawson
flips until obtaining DT(s). By Observation 6.3, we know that if ps has degree ds in
DT(s), then the total number of triangles created throughout the insertion of ps is at
most 2ds. Here is where we use backwards analysis to bound the value of the random
variable ds. Because DT(s) is a triangulation with s+ 3 points, it has 3(s+ 3)− 6 edges.
If we exclude the three edges of the convex hull, we get that the sum of the degree of all
interior vertices in DT(s) adds up to at most 2(3(s+ 3) − 9) = 6s. This means, that the
expected degree of a random point of Ps (i.e., not including p0, p−1 or p−2) is at most
6. In summary, we get that

E[number of triangles created in iteration s] 6 E[2ds−3] = 2E[ds]−3 6 2 ·6−3 = 9.

Because in the first step we create only one triangle, namely 4(p0p−1p−2), and since
the expected number of triangles created in each insertion step is at most 9, we get by
linearity of expectation that the total expected number of triangles created is at most
9n+ 1.

Note that we cannot say that all insertions create a number of triangle close to 9, i.e.,
there could be some very costly insertions throughout. However, the average is constant
which provides us with a linear expected total value. As a summation of independent
random variables, the size of the history graph is indeed concentrated around its mean,
which can be shown using standard Chernoff bounds. We proceed now to prove our main
result.

102

Geometry: C&A 2019 6.3. Analysis of the algorithm

Theorem 6.5. The Delaunay triangulation of a set P of n points in the plane can be
computed in O(n logn) expected time, using O(n) expected storage.

Proof. We have already established the correctness of the algorithm. For the storage, we
note that only the history graph could use more than linear storage, however Lemma 6.4
proves that its expected size is O(n) yielding the desired bound on the storage.

To bound the running time of the algorithm, we first ignore the time used during the
point location queries, i.e., the time used during the insertion of each point to find the
triangle that contains it. Ignoring this, the running time of the algorithm is proportional
to the number of triangles created. From Lemma 6.4 we know that only O(n) triangles
are created in expectation. That is, only O(n) additional expected time is needed.

It remains to account for the point location queries. That is, given 1 6 s 6 n, we
are interested in the expected time needed to locate ps in the triangulation DT(s −
1). Recall that we do this by using the history graph. We start from its root, the
triangle 4(p0, p−1, p−2), and then traverse a path in this graph that finishes on a node
corresponding to the triangle of DT(s − 1) that contains ps. Since the out-degree of
all nodes in the history graph is O(1), the running time of the point location query is
proportional to the number of nodes visited. Recall that each internal node of this path
corresponds to a triangle that was created at an earlier stage, but that has been destroyed
and contains ps. A triangle 4 could only be already destroyed if a point pl lying in its
circumcircle was inserted before ps. Because of this, we introduce the following notation.
Given a triangle 4, let K(4) be the subset of points of P that lie in the circumcircle
of 4. With this notation, we can say that during the insertion of ps, the time needed
to locate it in DT(s− 1) is at most linear on the number of triangles 4 with ps ∈ K(4).
One can see that each triangle 4 can be charged at most once for each of the points
of P in K(4). Therefore, the total running time for all point location steps during the
construction is

O

(
n+

∑
4

|K(4)|

)
,

where the summation is taken over all Delaunay triangles 4 created by the algorithm.
We shall prove below that the expected value of this expression is O(n logn), which will
conclude our proof.

It remains to provide a bound on the expected size of the sets K(4) throughout the
running time of the algorithm. Note that for DT(1), we would expect K(4) to be roughly
n for each of its triangles, while for DT(n), we know that K(4) = 0 for all its triangles.
In the middle, we would like the values to interpolate nicely giving something close to
K(4) ≈ O(n/s) for the triangles in DT(s). While this is not exactly the case, it provides
a good intuition. We will show that the average behaves in this way.

Lemma 6.6. It holds that

E

[
n+

∑
4

|K(∆)|

]
= O(n logn),

103

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

where the summation is taken over all Delaunay triangles 4 created by the algo-
rithm.

Proof. Let τs be the set of triangles of DT(s) that are not part of DT(s − 1), i.e., the
set of triangles incident to ps in DT(s). Using this notation, we first rewrite the above
expression as follows:∑

4

|K(∆)| =

n∑
s=1

(∑
4∈τs

|K(4)|

)
. (6.7)

This holds because each triangle created by the algorithm is created in some iteration
and hence, belongs to some set τs for some 1 6 s 6 n.

For a point q in the plane, let ϕs(q) denote the number of triangles 4 of DT(s) such
that q ∈ K(4). In other words, we can think of placing the circumcircles of all triangles
of DT(s) in the plane and then count how many circles enclose q. Let also ϕ∗s(q) denote
the number of triangles 4 of τs such that q ∈ K(4). That is, we place the circumcircles
of all triangles incident to ps in DT(s) and count how many of them enclose q.

Then, we notice that for 1 6 s 6 n, the summation
∑
4∈τs |K(4)| counts the number

of points of P that lie inside the circumcircles of the triangles in τs. Because these
circumcircles belong to DT(s), they are empty of points of Ps, and hence, all points
lying inside these circumcircles belong to P \ Ps. Thus, we get that

∑
4∈τs

|K(4)| =
∑

q∈P\Ps

ϕ∗s(q). (6.8)

To analyze the expected value of ϕ∗s(q), we use conditional expectation. That is,
we condition on Ps being a specific set, and then later, take the weighted average of all
those expectations. Thus, we fix the set Ps and assume that Ps = Ps for some arbitrary
subset Ps of P with s elements. With this assumption, the triangulation DT(s) is fixed
and hence, ϕ∗s(q) depends only on which among the elements of Ps = Ps is the last one.
Since the order of insertion of the elements of Ps is random (random permutation chosen
uniformly at random), we get that for a triangle 4 of DT(s), this triangle is incident
to the random point ps with probability 3/s. Therefore, if we let χ4,s be an indicator
random variable that is one if and only if 4 is incident to ps (i.e., 4 ∈ τs), we get that
Pr[χ4,s = 1] = 3/s. Using this, we get that for a point q ∈ P \ Ps,

E[ϕ∗s(q)] =
∑

q ∈ K(4),
4 ∈DT(s)

E[χ4,s ·ϕs(q)] =
3

s
·ϕs(q).

Plugging this into (6.8) and taking expectation, we get that by linearity of expecta-
tion, the following holds

E

[∑
4∈τs

|K(4)|

]
=

∑
q∈P\Ps

E[ϕ∗s(q)] =
3

s

 ∑
q∈P\Ps

ϕs(q)

 . (6.9)

104

Geometry: C&A 2019 6.3. Analysis of the algorithm

Additionally, because any q ∈ P \ Ps is equally likely to be ps+1, i.e., each point of
P \ Ps is ps+1 with probability 1/(n− s), we have that

E[ϕs(ps+1)] =
1

n− s

 ∑
q∈P\Ps

ϕs(q)

 .
Which implies by arranging the terms that∑

q∈P\Ps

ϕs(q) = (n− s) · E[ϕs(ps+1)].

Plugging this back into (6.9), we get that

E

[∑
4∈τs

|K(4)|

]
=
3(n− s)

s
E[ϕs(ps+1)]. (6.10)

Recall that ϕs(ps+1) is the number of triangles 4 of DT(s) whose circumcircle en-
closes ps+1, i..e, ps+1 ∈ K(4). However, these triangles of DT(s) are exactly the ones
that will be destroyed by the insertion of ps+1. Moreover, by Observation 6.3, the tri-
angles destroyed are at most twice the number of triangles of DT(s + 1) incident to
ps+1, i..e., the number of triangles in τs+1. Therefore, we get that ϕs(ps+1) = O(|τs+1|).
Plugging this into (6.10), we get that

E

[∑
4∈τs

|K(4)|

]
= O

(
n− s

s
· E[|τs+1|]

)
.

Recall that so far, we have assumed that Ps = Ps. To remove this assumption, we can
take the average over all possible different sets Ps and all permutations of P. Since all
sets and all permutations are equally likely, the average of all of them stays the same.
However, now that we are not conditioning the probability, we know that E[τs+1] 6 9

by the proof of Lemma 6.4. Thus, the previous expression yields that

E

[∑
4∈τs

|K(4)|

]
= O

(
n− s

s

)
.

Summing over all values of s and by linearity of expectation, we get the expected value
of (6.7)

E

[
n∑
s=1

(∑
4∈τs

|K(4)|

)]
= O

(
n∑
s=1

n− s

s

)
6 O

(
n

n∑
s=1

1

s

)
= O(n logn).

105

Chapter 6. Delaunay Triangulation: Construction Geometry: C&A 2019

Exercise 6.11. For a sequence of n pairwise distinct numbers y1, . . . , yn consider the
sequence of pairs (min{y1, . . . , yi},max{y1, . . . , yi})i=0,1,...,n (min ∅ := +∞,max ∅ :=
−∞). How often do these pairs change in expectation if the sequence is permuted
randomly, each permutation appearing with the same probability? Determine the
expected value.

Exercise 6.12. Given a set P of n points in convex position represented by the clockwise
sequence of the vertices of its convex hull, provide an algorithm to compute its
Delaunay triangulation in O(n) time.

Questions

28. How can we efficiently compute the three artificial points p0, p−1 and p−2
whose convex hull contains all points of P, while keeping their coordinates
“small”.

29. Describe the algorithm for the incremental construction of DT(P): how do we
find the triangle containing the point ps to be inserted into DT(s− 1)? How do we
transform DT(Ps−1) into DT(s)? How many steps does the latter transformation
take, in terms of DT(s)?

30. What are the two types of triangles that the history graph contains?

106

	Delaunay Triangulation: Incremental Construction
	Incremental construction
	The History Graph
	Analysis of the algorithm

