
Geometry: Combinatorics & Algorithms, Lecture Notes 2018
geometry.inf.ethz.ch/gca18-3.pdf

Chapter 3

Polygons

Although we can think of a line ` ⊂ R2 as an infinite point set that consists of all points
in R2 that are on `, there still exists a finite description for `. Such a description is, for
instance, provided by the three coefficients a, b, c ∈ R of an equation of the form ax +
by = c, with (a, b) 6= (0, 0). Actually this holds true for all of the fundamental geometric
objects that were mentioned in Chapter 1: Each of them has constant description
complexity (or, informally, just size), that is, it can be described by a constant1 number
of parameters.

In this course we will typically deal with objects that are not of constant size. Often
these are formed by merely aggregating constant-size objects, for instance, points to
form a finite set of points. But sometimes we also demand additional structure that goes
beyond aggregation only. Probably the most fundamental geometric objects of this type
are what we call polygons. You probably learned this term in school, but what is a
polygon precisely? Consider the examples shown in Figure 3.1. Are these all polygons?
If not, where would you draw the line?

(a) (b) (c) (d) (e) (f)

Figure 3.1: What is a polygon?

3.1 Classes of Polygons

Obviously, there is not the right answer to such a question and certainly there are
different types of polygons. Often the term polygon is used somewhat sloppily in place

1Unless specified differently, we will always assume that the dimension is (a small) constant. In a
high-dimensional space Rd, one has to account for a description complexity of Θ(d).
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of what we call a simple polygon, defined below.

Definition 3.1. A simple polygon is a compact region P ⊂ R2 that is bounded by a simple
closed curve γ : [0, 1]→ R2 that consists of a finite number of line segments. A curve
is a continuous map γ : [0, 1] → R2. A curve γ is closed, if γ(0) = γ(1) and it is
simple if it is injective on [0, 1), that is, the curve does not intersect itself.

Out of the examples shown above only Polygon 3.1a is simple. For each of the
remaining polygons it is impossible to combine the bounding segments into a simple
closed curve.

The term compact for subsets of Rd means bounded and closed. A subset of P ⊂ Rd

is bounded, if it is contained in the ball of radius r around the origin, for some finite
r > 0. Being closed means that the boundary is considered to be part of the polygon.
In order to formally define these terms, let us briefly review a few basic notions from
topology.

The standard topology of Rd is defined in terms of the Euclidean metric. A point
p ∈ Rd is interior to a set P ⊆ Rd, if there exists an ε-ball Bε(p) = {x ∈ Rd : ||x−p|| < ε}
around p, for some ε > 0, that is completely contained in P. A set is open, if all of its
points are interior; and it is closed, if its complement is open.

Exercise 3.2. Determine for each of the following sets whether they are open or closed
in R2. a) B1(0) b) {(1, 0)} c) R2 d) R2\Z2 e) R2\Q2 f) {(x, y) : x ∈ R, y > 0}

Exercise 3.3. Show that the union of countably many open sets in Rd is open. Show
that the union of a finite number of closed sets in Rd is closed. (These are two of
the axioms that define a topology. So the statements are needed to assert that the
metric topology is a topology, indeed.) What follows for intersections of open and
closed sets? Finally, show that the union of countably many closed sets in Rd is
not necessarily closed.

The boundary ∂P of a set P ⊂ Rd consists of all points that are neither interior to P
nor to its complement Rd \ P. By definition, for every p ∈ ∂P every ball Bε(p) contains
both points from P and from Rd\P. Sometimes one wants to consider a set P ⊂ Rd open
although it is not. In that case one can resort to the interior P◦ of P that is formed by
the subset of points interior to P. Similarly, the closure P of P is defined by P = P∪ ∂P.

Lower-dimensional objects, such as line segments in R2 or triangles in R3, do not
possess any interior point (because the ε-balls needed around any such point are full-
dimensional). Whenever we want to talk about the interior of a lower-dimensional set
S, we use the qualifier relative and write relint(S) to denote the interior of S relative to
the smallest affine subspace that contains S.

For instance, the smallest affine subspace that contains a line segment is a line and so
the relative interior of a line segment in R2 consists of all points except the endpoints,
just like for an interval in R1. Similarly, for a triangle in R3 the smallest affine subspace
that contains it is a plane. Hence its relative interior is just the interior of the triangle,
considered as a two-dimensional object.
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Exercise 3.4. Show that for any P ⊂ Rd the interior P◦ is open. (Why is there
something to show to begin with?) Show that for any P ⊂ Rd the closure P is
closed.

When describing a simple polygon P it is sufficient to describe only its boundary
∂P. As ∂P by definition is a simple closed curve γ that consists of finitely many line
segments, we can efficiently describe it as a sequence p1, . . . , pn of points, such that γ
is formed by the line segments p1p2, p2p3, . . . , pn−1pn, pnp1. These points are referred
to as the vertices of the polygon, and the segments connecting them are referred as the
edges of the polygon. The set of vertices of a polygon P is denoted by V(P), and the
set of edges of P is denoted by E(P).

Knowing the boundary, it is easy to tell apart the (bounded) interior from the (un-
bounded) exterior. This is asserted even for much more general curves by Theorem 2.1
(Jordan curve theorem). To prove this theorem in its full generality is surprisingly dif-
ficult. For simple polygons the situation is easier, though. The essential idea can be
worked out algorithmically, which we leave as an exercise.

Exercise 3.5. Describe an algorithm to decide whether a point lies inside or outside
of a simple polygon. More precisely, given a simple polygon P ⊂ R2 as a list of its
vertices (v1, v2, . . . , vn) in counterclockwise order and a query point q ∈ R2, decide
whether q is inside P, on the boundary of P, or outside. The runtime of your
algorithm should be O(n).

There are good reasons to ask for the boundary of a polygon to form a simple curve:
For instance, in the example depicted in Figure 3.1b there are several regions for which it
is completely unclear whether they should belong to the interior or to the exterior of the
polygon. A similar problem arises for the interior regions in Figure 3.1f. But there are
more general classes of polygons that some of the remaining examples fall into. We will
discuss only one such class here. It comprises polygons like the one from Figure 3.1d.

Definition 3.6. A region P ⊂ R2 is a simple polygon with holes if it can be described as
P = F \

⋃
H∈HH

◦, where H is a finite collection of pairwise disjoint simple polygons
(called holes) and F is a simple polygon for which F◦ ⊃

⋃
H∈HH.

The way this definition heavily depends on the notion of simple polygons makes it
straightforward to derive a similar trichotomy as the Jordan Curve Theorem provides
for simple polygons, that is, every point in the plane is either inside, or on the boundary,
or outside of P (exactly one of these three).

3.2 Polygon Triangulation

From a topological point of view, a simple polygon is nothing but a disk and so it is a very
elementary object. But geometrically a simple polygon can be—as if mocking the label
we attached to it—a pretty complicated shape, see Figure 3.2 for an example. While
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there is an easy and compact one-dimensional representation in terms of the boundary,
as a sequence of vertices/points, it is often desirable to work with a more structured
representation of the whole two-dimensional shape.

Figure 3.2: A simple (?) polygon.

For instance, it is not straightforward to compute the area of a general simple polygon.
In order to do so, one usually describes the polygon in terms of simpler geometric objects,
for which computing the area is easy. Good candidates for such shapes are triangles,
rectangles, and trapezoids. Indeed, it is not hard to show that every simple polygon
admits a “nice” partition into triangles, which we call a triangulation.

Definition 3.7. A triangulation of a simple polygon P with vertex set V(P) is a collection
T of triangles, such that

(1) P =
⋃

T∈T T ;

(2) V(P) =
⋃

T∈T V(T); and

(3) for every distinct pair T,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Exercise 3.8. Show that each condition in Definition 3.7 is necessary in the following
sense: Give an example of a non-triangulation that would form a triangulation if
the condition was omitted. Is the definition equivalent if (3) is replaced by T◦∩U◦ =
∅, for every distinct pair T,U ∈ T?

If we are given a triangulation of a simple polygon P it is easy to compute the area of
P by simply summing up the area of all triangles from T. Triangulations are an incredibly
useful tool in planar geometry, and one reason for their importance is that every simple
polygon admits one.

Theorem 3.9. Every simple polygon has a triangulation.

Proof. Let P be a simple polygon on n vertices. We prove the statement by induction on
n. For n = 3 we face a triangle P that is a triangulation by itself. For n > 3 consider the
lexicographically smallest vertex v of P, that is, among all vertices of P with a smallest x-
coordinate the one with smallest y-coordinate. Denote the neighbors of v (next vertices)
along ∂P by u and w. Consider the line segment uw. We distinguish two cases.

53
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Case 1: except for its endpoints u and w, the segment uw lies completely in P◦.
Then uw splits P into two smaller polygons, the triangle uvw and a simple polygon P ′

on n− 1 vertices (Figure 3.3a). By the inductive hypothesis, P ′ has a triangulation that
together with T yields a triangulation of P.

v

u

w

(a) Case 1.

v

u

w

p

(b) Case 2.

Figure 3.3: Cases in the proof of Theorem 3.9.

Case 2: relint(uw) 6⊂ P◦ (Figure 3.3b). By choice of v, the polygon P is contained in
the closed halfplane to the right of the vertical line through v. Therefore, as the segments
uv and vw are part of a simple closed curve defining ∂P, every point sufficiently close to
v and between the rays vu and vw must be in P◦.

On the other hand, since relint(uw) 6⊂ P◦, there is some point from ∂P in the interior
of the triangle T = uvw (by the choice of v the points u, v,w are not collinear and so T
is a triangle, indeed) or on the line segment uw. In particular, as ∂P is composed of line
segments, there is a vertex of P in T◦ or on uw (otherwise, a line segment would have to
intersect the line segment uw twice, which is impossible). Among all such vertices select
p to be one that is furthest from the line uw. Then the open line segment relint(vp) is
contained in T◦ and, thus, it splits P into two polygons P1 and P2 on less than n vertices
each (in one of them, u does not appear as a vertex, whereas w does not appear as a
vertex in the other). By the inductive hypothesis, both P1 and P2 have triangulations
and their union yields a triangulation of P.

Exercise 3.10. In the proof of Theorem 3.9, would the argument in Case 2 also work
if the point p was chosen to be a vertex of P in T◦ that is closest to v (in Euclidean
distance)?

The configuration from Case 1 above is called an ear : three consecutive vertices
u, v,w of a simple polygon P such that the relative interior of uw lies in P◦. In fact, we
could have skipped the analysis for Case 2 by referring to the following theorem.

Theorem 3.11 (Meisters [13, 14]). Every simple polygon that is not a triangle has two
non-overlapping ears, that is, two ears A and B such that A◦ ∩ B◦ = ∅.

But knowing Theorem 3.9 we can obtain Theorem 3.11 as a direct consequence of
the following
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Theorem 3.12. Every triangulation of a simple polygon on n > 4 vertices contains at
least two (triangles that are) ears.

Exercise 3.13. Prove Theorem 3.12.

Exercise 3.14. Let P be a simple polygon with vertices v1, v2, . . . , vn (in counterclock-
wise order), where vi has coordinates (xi, yi). Show that the area of P is

1

2

n∑
i=1

xiyi+1 − xi+1yi,

where (xn+1, yn+1) = (x1, y1).

The number of edges and triangles in a triangulation of a simple polygon are com-
pletely determined by the number of vertices, as the following simple lemma shows.

Lemma 3.15. Every triangulation of a simple polygon on n > 3 vertices consists of
n− 2 triangles and 2n− 3 edges.

Proof. Proof by induction on n. The statement is true for n = 3. For n > 3 consider
a simple polygon P on n vertices and an arbitrary triangulation T of P. Any edge uv in
T that is not an edge of P (and there must be such an edge because P is not a triangle)
partitions P into two polygons P1 and P2 with n1 and n2 vertices, respectively. Since
n1, n2 < n we conclude by the inductive hypothesis that T partitions P1 into n1 − 2
triangles and P2 into n2 − 2 triangles, using 2n1 − 3 and 2n2 − 3 edges, respectively.

All vertices of P appear in exactly one of P1 or P2, except for u and v, which appear in
both. Therefore n1+n2 = n+2 and so the number of triangles in T is (n1−2)+(n2−2) =
(n1 + n2) − 4 = n+ 2− 4 = n− 2. Similarly, all edges of T appear in exactly one of P1
or P2, except for the edge uv, which appears in both. Therefore the number of edges in
T is (2n1 − 3) + (2n2 − 3) − 1 = 2(n1 + n2) − 7 = 2(n+ 2) − 7 = 2n− 3.

The universal presence of triangulations is something particular about the plane:
The natural generalization of Theorem 3.9 to dimension three and higher does not hold.
What is this generalization, anyway?

Tetrahedralizations in R3. A simple polygon is a planar object that is a topological disk
that is locally bounded by patches of lines. The corresponding term inR3 is a polyhedron,
and although we will not formally define it here yet, a literal translation of the previous
sentence yields an object that topologically is a ball and is locally bounded by patches
of planes. A triangle in R2 corresponds to a tetrahedron in R3 and a tetrahedralization
is a nice partition into tetrahedra, where “nice” means that the union of the tetrahedra
covers the object, the vertices of the tetrahedra are vertices of the polyhedron, and any
two distinct tetrahedra intersect in either a common triangular face, or a common edge,
or a common vertex, or not at all.2

2These “nice” subdivisions can be defined in an abstract combinatorial setting, where they are called
simplicial complices.
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Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization. The
following construction is due to Schönhardt [17]. It is based on a triangular prism, that
is, two congruent triangles placed in parallel planes where the corresponding sides of both
triangles are connected by a rectangle (Figure 3.4a). Then one triangle is twisted/rotated
slightly within its plane. As a consequence, the rectangular faces are not plane anymore,
but they obtain an inward dent along their diagonal in direction of the rotation (Fig-
ure 3.4b). The other (former) diagonals of the rectangular faces—labeled ab ′, bc ′, and

(a)

a

b

c

a ′ c ′

b ′

(b)

Figure 3.4: The Schönhardt polyhedron cannot be subdivided into tetrahedra without
adding new vertices.

ca ′ in Figure 3.4b—are now epigonals, that is, they lie in the exterior of the polyhedron.
Since these epigonals are the only edges between vertices that are not part of the poly-
hedron, there is no way to add edges to form a tetrahedron for a subdivision. Clearly
the polyhedron is not a tetrahedron by itself, and so we conclude that it does not admit
a subdivision into tetrahedra without adding new vertices. Actually, it is NP-complete
to decide whether a non-convex polyhedron has a tetrahedralization [15]. If adding new
vertices—so-called Steiner vertices—is allowed, then there is no problem to construct
a tetrahedralization, and this holds true in general. Even if a tetrahedralization of a
polyhedron exists, there is another significant difference to polygons in R2. While the
number of triangles in a triangulation of a polygon depends only on the number of ver-
tices, the number of tetrahedra in two different tetrahedralization of the same polyhedron
may be different. See Figure 3.5 for a simple example of a polyhedron that has tetrahe-
dralization with two or three tetrahedra. Deciding whether a convex polyhedron has a
tetrahedralization with at most a given number of tetrahedra is NP-complete [6].

Exercise 3.16. Characterize all possible tetrahedralizations of the three-dimensional
cube.

Algorithms. Knowing that a triangulation exists is nice, but it is much better to know
that it can also be constructed efficiently.
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t

b

t

b

Figure 3.5: Two tetrahedralizations of the same polyhedron, a triangular bipyramid.
The left partition uses two polyhedra; both the top vertex t and the bottom
vertex b belong to only one tetrahedron. The right partition uses three
polyhedra that all share the dashed diagonal bt.

Exercise 3.17. Convert Theorem 3.9 into an O(n2) time algorithm to construct a
triangulation for a given simple polygon on n vertices.

The runtime achieved by the straightforward application of Theorem 3.9 is not op-
timal. We will revisit this question at several times during this course3 and discuss
improved algorithms for the problem of triangulating a simple polygon.

The best (in terms of worst-case runtime) algorithm known due to Chazelle [7] com-
putes a triangulation in linear time. But this algorithm is very complicated and we will
not discuss it here. There is also a somewhat simpler randomized algorithm to compute
a triangulation in expected linear time [4], which we will not discuss in detail, either.
The question of whether there exists a simple (which is not really a well-defined term,
of course, except that Chazelle’s Algorithm does not qualify) deterministic linear time
algorithm to triangulate a simple polygon remains open [10].

Polygons with holes. It is interesting to note that the complexity of the triangulation
problem changes to Θ(n logn), if the polygon may contain holes [5]. This means that
there is an algorithm to construct a triangulation for a given simple polygon with holes
on a total of n vertices (counting both the vertices on the outer boundary and those of
holes) in O(n logn) time. But there is also a lower bound of Ω(n logn) operations that
holds in all models of computation in which there exists a corresponding lower bound
for comparison-based sorting. This difference in complexity is a very common pattern:
There are many problems that are (sometimes much) harder for simple polygons with
holes than for simple polygons. So maybe the term “simple” has some justification, after
all. . .

3This is actually not true in this iteration of the course. But in the full version of the lecture notes you
can find the corresponding material in the appendix, in chapters A and C.
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General triangle covers. What if we drop the “niceness” conditions required for triangu-
lations and just want to describe a given simple polygon as a union of triangles? It
turns out this is a rather drastic change and, for instance, it is unlikely that we can
efficiently find an optimal/minimal description of this type: Christ has shown [8] that it
is NP-hard to decide whether for a simple polygon P on n vertices and a positive integer
k, there exists a set of at most k triangles whose union is P. In fact, the problem is not
even known to be in NP, because it is not clear whether the coordinates of solutions can
always be encoded compactly.

3.3 The Art Gallery Problem

In 1973 Victor Klee posed the following question: “How many guards are necessary, and
how many are sufficient to patrol the paintings and works of art in an art gallery with n
walls?” From a geometric point of view, we may think of an “art gallery with n walls” as
a simple polygon bounded by n edges, that is, a simple polygon P with n vertices. And
a guard can be modeled as a point where we imagine the guard to stand and observe
everything that is in sight. In sight, finally, refers to the walls of the gallery (edges of
the polygon) that are opaque and, thus, prevent a guard to see what is behind. In other
words, a guard (point) g can watch over every point p ∈ P, for which the line segment
gp lies completely in P◦, see Figure 3.6.

g

Figure 3.6: The region that a guard g can observe.

It is not hard to see that bn/3c guards are necessary in general.

Exercise 3.18. Describe a family (Pn)n>3 of simple polygons such that Pn has n vertices
and at least bn/3c guards are needed to guard it.

What is more surprising: bn/3c guards are always sufficient as well. Chvátal [9] was
the first to prove that, but then Fisk [11] gave a much simpler proof using—you may
have guessed it—triangulations. Fisk’s proof was considered so beautiful that it was
included into “Proofs from THE BOOK” [3], a collection inspired by Paul Erdős’ belief
in “a place where God keeps aesthetically perfect proofs”. The proof is based on the
following lemma.
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Lemma 3.19. Every triangulation of a simple polygon is 3-colorable. That is, each
vertex can be assigned one of three colors in such a way that adjacent vertices
receive different colors.

Proof. Induction on n. For n = 3 the statement is obvious. For n > 3, by Theorem 3.12
the triangulation contains an ear uvw. Cutting off the ear creates a triangulation of a
polygon on n − 1 vertices, which by the inductive hypothesis admits a 3-coloring. Now
whichever two colors the vertices u and w receive in this coloring, there remains a third
color to be used for v.

Figure 3.7: A triangulation of a simple polygon on 17 vertices and a 3-coloring of it.
The vertices shown solid orange form the smallest color class and guard
the polygon using b17/3c = 5 guards.

Theorem 3.20 (Fisk [11]). Every simple polygon on n vertices can be guarded using at
most bn/3c guards.

Proof. Consider a triangulation of the polygon and a 3-coloring of the vertices as ensured
by Lemma 3.19. Take the smallest color class, which clearly consists of at most bn/3c
vertices, and put a guard at each vertex. As every point of the polygon is contained in
at least one triangle and every triangle has exactly one vertex in the guarding set, the
whole polygon is guarded.

3.4 Optimal Guarding

While Exercise 3.18 shows that the bound in Theorem 3.20 is tight in general, it is easy
to see that Fisk’s method does not necessarily minimize the number of guards. Also,
it is natural to lift the restriction that guards can be placed at vertices only, and allow
guards to be placed anywhere on the boundary or even anywhere in the interior of the
polygon. In all these variants, we can ask for the minimum number of guards required
to guard a given polygon P. These problems have been shown to be NP-hard by Lee
and Lin [12] already in the 1980s. However, if the guards are not constrained to lie on
vertices, it is not clear whether the corresponding decision problem actually is in NP. In
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g`

gm gr

Figure 3.8: To guard this polygon with three guards, there must be one guard on each
of the green dashed segments. The middle guard gm must be to the left of
the blue curve, to the right of the red curve, and on the dashed green line.
The intersection point of these three curves has irrational coordinates.

fact, recent results by Abrahamsen et al. suggest that this is unlikely to be the case. In
the remainder of this section we will briefly discuss some of these results.

Recall that, to show that a problem is in NP, one usually describes a certificate that
allows to verify a solution for any problem instance in polynomial time. If we restrict the
guards to be on vertices, a natural certificate for a solution is the set of vertices on which
we place guards. In the general problem, a natural candidate for a certificate are the
coordinates of the guards. Since no more than bn/3c guards are required, this seems a
reasonable certificate. But what if the number of bits needed to explicitly represent these
coordinates are exponential in n? One might be tempted to think that any reasonable
guard can be placed at an intersection point of some lines that are defined by polygon
vertices. Alas, in general this is not correct: some guards with irrational coordinates may
be required, even if all vertices of P have integral coordinates. This surprising result has
been presented in 2017 and we will sketch its main ideas, referring to the paper by
Abrahamsen, Adamaszek, and Miltzow [1] for more details and the exact construction.

Consider the polygon shown in Figure 3.8, which consists of a main rectangular
region with triangular, rectangular, and trapezoidal regions attached. We will argue
that, if this polygon is guarded with less than four guards, at least one of the guards
has an irrational coordinate. The polygon contains three pairs of triangular regions
with the following structure. Each pair is connected by a green dashed segment in the
figure. This segment contains one edge of each of the two triangles and separates their
interiors. Hence, a single guard that sees both of these triangles has to be placed on
this separating segment. Further, there is no other point that can guard two of these
six triangles. Therefore, if we have only three guards, each of them must be placed on
one of these three disjoint segments. The small rectangular regions to the left, top, and
bottom outside the main rectangular region further constrain the positions of the guards
along these segments.

Let the guards be g`, gm, and gr, as in the figure. The guard g` cannot see all the
points inside the left two trapezoidal regions, and thus gm has to be placed appropriately.
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For each position of g` on its segment, we get a unique rightmost position on which a
second guard can be placed to guard the two trapezoids. The union of these points defines
an arc that is a segment of a quadratic curve (the roots of a quadratic polynomial). We
get an analogous curve for gr and the two trapezoids attached to the right. By a careful
choice of the vertex coordinates, these two curves cross at a point p that also lies on the
segment for the guard gm and has irrational coordinates. It then follows from a detailed
argument (see [1]) that p is the only feasible placement of gm. Let us point out that the
choice of the vertex coordinates to achieve this is far from trivial. For example, there
can only be a single line defined by two points with rational coordinates that passes
through p, and this is the line on which the guard gm is constrained to lie on.

Exercise 3.21. Let P be a polygon with vertices on the integer grid, and let g be a
point inside that polygon with at least one irrational coordinate. Show that there
can be at most one diagonal of P passing through g.

Nevertheless, the sketched construction leads to the following result.

Theorem 3.22 (Abrahamsen et al. [1]). For any k, there is a simple polygon P with
integer vertex coordinates such that P can be guarded by 3k guards, while a guard
set having only rational coordinates requires 4k guards.

Abrahamsen, Adamaszek, and Miltzow [2] showed recently that the art gallery prob-
lem is actually complete in a complexity class called ∃R. The existential theory of
the reals (see [16] for details) is the set of true sentences of the form ∃x1, . . . , xn ∈
R : φ(x1, . . . , xn) for a quantifier-free Boolean formula φ without negation that can use
the constants 0 and 1, as well as the operators +, ∗, and <. For example, ∃x, y : (x <
y) ∧ (x ∗ y < 1 + 1) is such a formula. A problem is in the complexity class ∃R if it
allows for a polynomial-time reduction to the problem of deciding such formulas, and it
is complete if in addition every problem in ∃R can be reduced to it by a polynomial-time
reduction.

For the art gallery problem, the result by Abrahamsen et al. [2] implies that the
coordinates of an optimal guard set may be doubly-exponential in the input size. This
statement does not exclude the possibility of a more concise, implicit way to express the
existence of an optimal solution. However, if we found such a way, then this would imply
that the art gallery problem is in NP, which, in turn, would imply NP = ∃R.

Questions

8. What is a simple polygon/a simple polygon with holes? Explain the definitions
and provide some examples of members and non-members of the respective classes.
For a given polygon you should be able to tell which of these classes it belongs to
or does not belong to and argue why this is the case.
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9. What is a closed/open/bounded set in Rd? What is the interior/closure of a
point set? Explain the definitions and provide some illustrative examples. For a
given set you should be able to argue which of the properties mentioned it possesses.

10. What is a triangulation of a simple polygon? Does it always exist? Explain the
definition and provide some illustrative examples. Present the proof of Theorem 3.9
in detail.

11. How about higher dimensional generalizations? Can every polyhedron in R3

be nicely subdivided into tetrahedra? Explain Schönhardt’s construction.

12. How many points are needed to guard a simple polygon? Present the proofs of
Theorem 3.12, Lemma 3.19, and Theorem 3.20 in detail.

13. Is there a compact representation for optimal guard placements? State Theo-
rem 3.22 and sketch the construction.
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