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Chapter 10

Crossings

So far within this course we have mostly tried to avoid edge crossings and studied classes
of planar graphs that allow us to avoid crossings altogether. However, without doubt
there are many interesting graphs that are not planar, and still we would like to draw
them in a reasonable fashion. An obvious quantitative approach is to still avoid crossings
as much as possible, even if they cannot be avoided completely.

For a graph G = (V, E), the crossing number cr(G) is defined as the minimum
number of edge crossings over all possible drawings of G. In an analogous fashion, the
rectilinear crossing number cr(G) is defined as the minimum number of edge crossings
over all possible straight-line drawings of G.

In order to see that thes notions are well-defined, let us first argue that the number of
crossings in a minimum-crossing drawing is finite and, in fact, upper bounded by

(
|E|
2

)
.

Lemma 10.1. In a drawing of a graph G with cr(G) crossings, every two distinct edges
share at most one point.

Proof. By a rerouting argument. . .

In particular, by Lemma 10.1 no two adjacent edges (that is, edges that have a
common endpoint) cross. A drawing that satisfies the statement of Lemma 10.1 is called
a simple topological drawing. So, using this term, Lemma 10.1 could also be stated as
“Every minimum-crossing drawing is a simple topological drawing.”

It is quite easy to give an upper bound on the crossing number of a particular graph,
simply by describing a drawing and counting the number of crossings in that drawing.
Conversely, it is much harder to give a lower bound on the crossing number of a graph
because such a bound corresponds to a statement about all possible drawings of that
graph. But the following simple lower bound can be obtained by counting edges.

Lemma 10.2. For a graph G with n > 3 vertices and e edges, we have cr(G) >
e− (3n− 6).

Proof. Consider a drawing of G = (V, E) with cr(G) crossings. For each crossing, pick
one of the two involved edges arbitrarily. Obtain a new graph G ′ = (V, E ′) from G by
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removing all picked edges. By construction G ′ is plane and, therefore, |E ′| 6 3n − 6 by
Corollary 2.5. As at most cr(G) edges were picked (some edge could be picked for several
crossings), we have |E ′| > |E|− cr(G). Combining both bounds completes the proof.

The bound in Lemma 10.2 is quite good if the number of edges is close to 3n but not
so good for dense graphs. For instance, for the complete graph Kn the lemma guarantees
a quadratic number of crossings, whereas according to the Harary-Hill Conjecture [3]

cr(Kn) =
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
∈ Θ(n4).

So for a dense graph G we should try a different approach. Given that the bound in
Lemma 10.2 is not so bad for sparse graphs, why not apply it to some sparse subgraph of
G? This astonishingly simple idea turns out to work really well, as the following theorem
demonstrates.

Theorem 10.3 (Crossing Lemma [2]). For a graph G with n vertices and e > 4n edges,
we have cr(G) > e3/(64n2).

Proof. Consider a drawing of G with cr(G) crossings. Take a random induced subgraph
of G by selecting each vertex independently with probability p (a suitable value for p
will be determined later). By this process we obtain a random subset U ⊆ V and the
corresponding induced subgraph G[U], along with an induced drawing for G[U]. Consider
the following three random variables:

� N, the number of vertices selected, with E[N] = pn;

� M, the number of edges induced by the selected vertices, with E[M] = p2e; and

� C, the number of crossings induced by the selected vertices and edges, with E[C] =
p4cr(G). (Here we use that adjacent edges do not cross in a minimum-crossing
drawing by Lemma 10.1.)

According to Lemma 10.2, these quantities satisfy C > cr(G[U]) >M − 3N. Taking
expectations on both sides and using linearity of expectation yields E[C] > E[M]−3E[N]
and so p4cr(G) > p2e − 3pn. Setting p = 4n/e (which is 6 1 due to the assumption
e > 4n) gives

cr(G) >
e

p2
− 3

n

p3
=

e3

16n2
− 3

e3

64n2
=

e3

64n2

The constant 1/64 in the statement of Theorem 10.3 is not the best possible. On one
hand, Ackerman [1] showed that 1/64 can be replaced by 1/29, at the cost of requiring
e > 7n. On the other hand, Pach and Tóth [4] describe graphs with n � e � n2 that
have crossing number at most

16

27π2

e3

n2
<

1

16.65

e3

n2
.
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Hence it is not possible to replace 1/64 by 1/16.65 in the statement of Theorem 10.3.
In the remainder of this chapter, we will discuss several nontrivial bounds on the size

of combinatorial structures that can be obtained by a more-or-less straightforward appli-
cation of the Crossing Lemma. These beautiful connections were observed by Székely [5],
the original proofs were different and more involved.

Theorem 10.4 (Szemerédi-Trotter [6]). The maximum number of incidences between n
points and m lines in R2 is at most 3

√
32 · n2/3m2/3 + 4n+m.

Proof. Let P denote the given set of n points, and let L denote the given set of m lines.
We may suppose that every line from L contains at least one point from P. (Discard all
lines that do not; they do not contribute any incidence.) Denote by I the number of
incidences between P and L. Consider the graph G = (P, E) whose vertex set is P, and
where a pair p, q of points is connected by an edge if p and q appear consecutively along
some line ` ∈ L (that is, both p and q are incident to ` and no other point from P lies
on the line segment pq). Using the straight-line drawing induced by the arrangement of
L we may regard G as a geometric graph with at most

(
m
2

)
crossings.

Every line from L contains k > 1 point(s) from P and contributes k − 1 edges to G.
Hence |E| = I −m. If |E| 6 4n, then I 6 4n +m and the theorem holds. Otherwise, we
can apply the Crossing Lemma to obtain(

m

2

)
> cr(G) >

|E|3

64n2

and so I 6 3
√
32n2/3m2/3 +m.

Theorem 10.5. The maximum number of unit distances determined by n points in R2

is at most 5n4/3.

Proof. Let P denote the given set of n points, and consider the set C of n unit circles
centered at the points in P. Then the number I of incidences between P and C is exactly
twice the number of unit distances between points from P.

Define a graph G = (P, E) on P where two vertices p and q are connected by an edge
if they appear consecutively along some circle c ∈ C (that is, p, q ∈ c and at least one of
the circular arcs of c between p and q does not contain any other point from P). Clearly
|E| = I.

Obtain a new graph G ′ = (P, E ′) from G by removing all edges along circles from C

that contain at most two points from P. Note that |C| = n and that every circle whose
edges are removed contributes at most two edges to G. Therefore |E ′| > |E| − 2n. In
G ′ there are no loops and no two vertices are connected by two edges along the same
circle. Therefore, any two vertices are connected by at most two edges because there are
exactly two distinct unit circles passing through any two distinct points in R2.

Obtain a new graph G ′′ = (P, E ′′) from G ′ by removing one copy of every double
edge. Clearly G ′′ is a simple graph with |E ′′| > |E ′|/2 > (|E|/2) − n. As every pair of
circles intersects in at most two points, we have cr(G ′′) 6 2

(
n
2

)
6 n2.
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If |E ′′| 6 4n, then (|E|/2) − n 6 4n and so I = |E| 6 10n < 10n4/3 and the theorem
holds. Otherwise, by the Crossing Lemma we have

n2 > cr(G ′′) >
|E ′′|3

64n2

and so |E ′′| 6 4n4/3. It follows that I = |E| 6 8n4/3 + 2n 6 10n4/3.

Theorem 10.6. For A ⊂ R with |A| = n > 3 we have max {|A+A|, |A ·A|} > 1
4
n5/4.

Proof. Let A = {a1, . . . , an}. Set X = A + A and Y = A · A. We will show that
|X||Y| > 1

16
n5/2, which proves the theorem. Let P = X × Y ⊂ R2 be the set of points

whose x-coordinate is in X and whose y-coordinate is in Y. Clearly |P| = |X||Y|. Next
define a set L of lines by `ij = {(x, y) ∈ R2 : y = ai(x− aj)}, for i, j ∈ {1, . . . , n}. Clearly
|L| = n2.

On the one hand, every line `ij contains at least n points from P because for xk =
aj+ak ∈ X and yk = ai(xk−aj) = aiak ∈ Y we have (xk, yk) ∈ P∩`ij, for k ∈ {1, . . . , n}.
Therefore the number I of incidences betwen P and L is at least n3.

On the other hand, by the Szemerédi-Trotter Theorem we have I 6 3
√
32|P|2/3n4/3 +

4|P|+ n2. Combining both bounds we obtain

n3 6
3
√
32|P|2/3n4/3 + 4|P|+ n2.

Hence either 4|P|+n2 > n3

2
, which implies |P| > 1

16
n5/2, for n > 3; or 3

√
32 |P|2/3n4/3 > n3

2

and thus

|P|2/3 >
n3

2
3
√
32n4/3

=

(
n5

256

)1/3

=⇒ |P| >
n5/2

16
.

Exercise 10.7. Consider two edges e and f in a topological plane drawing so that e and
f cross at least twice. Prove or disprove: There exist always two distinct crossings
x and y of e and f so that the portion of e between x and y is not crossed by f and
the portion of f between x and y is not crossed by e.

Exercise 10.8. Let G be a graph with n > 3 vertices, e edges, and cr(G) = e−(3n− 6).
Show that in every drawing of G with cr(G) crossings, every edge is crossed at most
once.

Exercise 10.9. Consider the abstract graph G that is obtained as follows: Start from
a plane embedding of the 3-dimensional (hyper-)cube, and add in every face a pair
of (crossing) diagonals. Show that cr(G) = 6 < cr(G).

Exercise 10.10. A graph is 1-planar if it can be drawn in the plane so that every edge
is crossed at most once. Show that a 1-planar graph on n > 3 vertices has at most
4n− 8 edges.
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Exercise 10.11. Show that the bound from the Crossing Lemma is asymptotically tight:
There exists a constant c so that for every n, e ∈ N with e 6

(
n
2

)
there is a graph with

n vertices and e edges that admits a plane drawing with at most ce3/n2 crossings.

Exercise 10.12. Show that the maximum number of unit distances determined by n
points in R2 is Ω(n logn). Hint: Consider the hypercube.

Questions

54. What is the crossing number of a graph? What is the rectilinear crossing
number? Give the definitions and examples. Explain the difference.

55. For a nonplanar graph, the more edges it has, the more crossings we would
expect. Can you quantify such a correspondence more precisely? State and
prove Lemma 10.2 and Theorem 10.3 (The Crossing Lemma).

56. Why is it called “Crossing Lemma” rather than “Crossing Theorem”? Explain
at least two applications of the Crossing Lemma, for instance, your pick out of the
theorems 10.4, 10.5, and 10.6.
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