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Chapter 5

Delaunay Triangulations

In Chapter 3 we have discussed triangulations of simple polygons. A triangulation nicely
partitions a polygon into triangles, which allows, for instance, to easily compute the
area or a guarding of the polygon. Another typical application scenario is to use a
triangulation T for interpolation: Suppose a function f is defined on the vertices of the
polygon P, and we want to extend it “reasonably” and continuously to P◦. Then for a
point p ∈ P◦ find a triangle t of T that contains p. As p can be written as a convex
combination

∑3
i=1 λivi of the vertices v1, v2, v3 of t, we just use the same coefficients to

obtain an interpolation f(p) :=
∑3
i=1 λif(vi) of the function values.

If triangulations are a useful tool when working with polygons, they might also turn
out useful to deal with other geometric objects, for instance, point sets. But what could
be a triangulation of a point set? Polygons have a clearly defined interior, which naturally
lends itself to be covered by smaller polygons such as triangles. A point set does not have
an interior, except . . . Here the notion of convex hull comes handy, because it allows us
to treat a point set as a convex polygon. Actually, not really a convex polygon, because
points in the interior of the convex hull should not be ignored completely. But one way to
think of a point set is as a convex polygon—its convex hull—possibly with some holes—
which are points—in its interior. A triangulation should then partition the convex hull
while respecting the points in the interior, as shown in the example in Figure 5.1b.

(a) Simple polygon triangulation. (b) Point set triangulation. (c) Not a triangulation.

Figure 5.1: Examples of (non-)triangulations.

In contrast, the example depicted in Figure 5.1c nicely subdivides the convex hull
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but should not be regarded a triangulation: Two points in the interior are not respected
but simply swallowed by a large triangle.
This interpretation directly leads to the following adaption of Definition 3.7.

Definition 5.1. A triangulation of a finite point set P ⊂ R2 is a collection T of triangles,
such that

(1) conv(P) =
⋃
T∈T T ;

(2) P =
⋃
T∈T V(T); and

(3) for every distinct pair T ,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Just as for polygons, triangulations are universally available for point sets, meaning
that (almost) every point set admits at least one.

Proposition 5.2. Every set P ⊆ R2 of n > 3 points has a triangulation, unless all points
in P are collinear.

Proof. In order to construct a triangulation for P, consider the lexicographically sorted
sequence p1, . . . ,pn of points in P. Let m be minimal such that p1, . . . ,pm are not
collinear. We triangulate p1, . . . ,pm by connecting pm to all of p1, . . . ,pm−1 (which are
on a common line), see Figure 5.2a.

(a) Getting started. (b) Adding a point.

Figure 5.2: Constructing the scan triangulation of P.

Then we add pm+1, . . . ,pn. When adding pi, for i > m, we connect pi with all
vertices of Ci−1 := conv({p1, . . . ,pi−1}) that it “sees”, that is, every vertex v of Ci−1 for
which piv∩Ci−1 = {v}. In particular, among these vertices are the two points of tangency
from pi to Ci−1, which shows that we always add triangles (Figure 5.2b) whose union
after each step covers Ci.

The triangulation that is constructed in Proposition 5.2 is called a scan triangulation.
Such a triangulation (Figure 5.3a (left) shows a larger example) is usually “ugly”, though,
since it tends to have many long and skinny triangles. This is not just an aesthetic deficit.
Having long and skinny triangles means that the vertices of a triangle tend to be spread
out far from each other. You can probably imagine that such a behavior is undesirable,
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(a) Scan triangulation. (b) Delaunay triangulation.

Figure 5.3: Two triangulations of the same set of 50 points.

for instance, in the context of interpolation. In contrast, the Delaunay triangulation
of the same point set (Figure 5.3b) looks much nicer, and we will discuss in the next
section how to get this triangulation.

Exercise 5.3. Describe an O(n logn) time algorithm to construct a scan triangulation
for a set of n points in R2.

On another note, if you look closely into the SLR-algorithm to compute planar convex
hull that was discussed in Chapter 4, then you will realize that we also could have used
this algorithm in the proof of Proposition 5.2. Whenever a point is discarded during
SLR, a triangle is added to the polygon that eventually becomes the convex hull.

In view of the preceding chapter, we may regard a triangulation as a plane graph:
the vertices are the points in P and there is an edge between two points p 6= q, if and
only if there is a triangle with vertices p and q. Therefore we can use Euler’s formula to
determine the number of edges in a triangulation.

Lemma 5.4. Any triangulation of a set P ⊂ R2 of n points has exactly 3n − h − 3
edges, where h is the number of points from P on ∂conv(P).

Proof. Consider a triangulation T of P and denote by E the set of edges and by F the
set of faces of T . We count the number of edge-face incidences in two ways. Denote
I = {(e, f) ∈ E× F : e ⊂ ∂f}.

On the one hand, every edge is incident to exactly two faces and therefore |I| = 2|E|.
On the other hand, every bounded face of T is a triangle and the unbounded face has h
edges on its boundary. Therefore, |I| = 3(|F|− 1) + h.
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Together we obtain 3|F| = 2|E| − h + 3. Using Euler’s formula (3n − 3|E| + 3|F| = 6)
we conclude that 3n− |E|− h+ 3 = 6 and so |E| = 3n− h− 3.

In graph theory, the term “triangulation” is sometimes used as a synonym for “maxi-
mal planar”. But geometric triangulations are different, they are maximal planar in the
sense that no straight-line edge can be added without sacrificing planarity.

Corollary 5.5. A triangulation of a set P ⊂ R2 of n points is maximal planar, if and
only if conv(P) is a triangle.

Proof. Combine Corollary 2.5 and Lemma 5.4.

Exercise 5.6. Find for every n > 3 a simple polygon P with n vertices such that P has
exactly one triangulation. P should be in general position, meaning that no three
vertices are collinear.

Exercise 5.7. Show that every set of n > 5 points in general position (no three points
are collinear) has at least two different triangulations.
Hint: Show first that every set of five points in general position contains a convex
4-hole, that is, a subset of four points that span a convex quadrilateral that does
not contain the fifth point.

5.1 The Empty Circle Property

We will now move on to study the ominous and supposedly nice Delaunay triangulations
mentioned above. They are defined in terms of an empty circumcircle property for
triangles. The circumcircle of a triangle is the unique circle passing through the three
vertices of the triangle, see Figure 5.4.

Figure 5.4: Circumcircle of a triangle.

Definition 5.8. A triangulation of a finite point set P ⊂ R2 is called a Delaunay triangu-
lation, if the circumcircle of every triangle is empty, that is, there is no point from
P in its interior.

Consider the example depicted in Figure 5.5. It shows a Delaunay triangulation of a
set of six points: The circumcircles of all five triangles are empty (we also say that the
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Figure 5.5: All triangles satisfy the empty circle property.

triangles satisfy the empty circle property). The dashed circle is not empty, but that is
fine, since it is not a circumcircle of any triangle.

It is instructive to look at the case of four points in convex position. Obviously, there
are two possible triangulations, but in general, only one of them will be Delaunay, see
Figure 5.6a and 5.6b. If the four points are on a common circle, though, this circle is
empty; at the same time it is the circumcircle of all possible triangles; therefore, both
triangulations of the point set are Delaunay, see Figure 5.6c.

(a) Delaunay triangulation. (b) Non-Delaunay triangulation. (c) Two Delaunay triangulations.

Figure 5.6: Triangulations of four points in convex position.

Proposition 5.9. Given a set P ⊂ R2 of four points that are in convex position but not
cocircular. Then P has exactly one Delaunay triangulation.

Proof. Consider a convex polygon P = pqrs. There are two triangulation of P: a
triangulation T1 using the edge pr and a triangulation T2 using the edge qs.

Consider the family C1 of circles through pr, which contains the circumcircles C1 =
pqr and C ′1 = rsp of the triangles in T1. By assumption s is not on C1. If s is outside of
C1, then q is outside of C ′1: Consider the process of continuously moving from C1 to C ′1
in C1 (Figure 5.7a); the point q is “left behind” immediately when going beyond C1 and
only the final circle C ′1 “grabs” the point s.
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(a) Going from C1 to C ′1 in C1.

p

q r

s

C1

C2

(b) Going from C1 to C2 in C2.

Figure 5.7: Circumcircles and containment for triangulations of four points.

Similarly, consider the family C2 of circles through pq, which contains the circumcir-
cles C1 = pqr and C2 = spq, the latter belonging to a triangle in T2. As s is outside of
C1, it follows that r is inside C2: Consider the process of continuously moving from C1

to C2 in C2 (Figure 5.7b); the point r is on C1 and remains within the circle all the way
up to C2. This shows that T1 is Delaunay, whereas T2 is not.

The case that s is located inside C1 is symmetric: just cyclically shift the roles of
pqrs to qrsp.

5.2 The Lawson Flip algorithm

It is not clear yet that every point set actually has a Delaunay triangulation (given that
not all points are on a common line). In this and the next two sections, we will prove
that this is the case. The proof is algorithmic. Here is the Lawson flip algorithm for a
set P of n points.

1. Compute some triangulation of P (for example, the scan triangulation).

2. While there exists a subtriangulation of four points in convex position that is not
Delaunay (like in Figure 5.6b), replace this subtriangulation by the other triangu-
lation of the four points (Figure 5.6a).

We call the replacement operation in the second step a (Lawson) flip.

Theorem 5.10. Let P ⊆ R2 be a set of n points, equipped with some triangulation
T. The Lawson flip algorithm terminates after at most

(
n
2

)
= O(n2) flips, and the

resulting triangulation D is a Delaunay triangulation of P.

We will prove Theorem 5.10 in two steps: First we show that the program described
above always terminates and, therefore, is an algorithm, indeed (Section 5.3). Then we
show that the algorithm does what it claims to do, namely the result is a Delaunay
triangulation (Section 5.4).
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5.3 Termination of the Lawson Flip Algorithm: The Lifting Map

In order to prove Theorem 5.10, we invoke the (parabolic) lifting map. This is the
following: given a point p = (x,y) ∈ R2, its lifting `(p) is the point

`(p) = (x,y, x2 + y2) ∈ R3.

Geometrically, ` “lifts” the point vertically up until it lies on the unit paraboloid

{(x,y, z) | z = x2 + y2} ⊆ R3,

see Figure 5.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 5.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 4.28.
It is illustrated in Figure 5.8b.

Lemma 5.11. Let C ⊆ R2 be a circle of positive radius. The “lifted circle” `(C) =
{`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover, a point p ∈ R2

is strictly inside (outside, respectively) of C if and only if the lifted point `(p) is
strictly below (above, respectively) hC.

Using the lifting map, we can now prove Theorem 5.10. Let us fix the point set P for
this and the next section. First, we need to argue that the algorithm indeed terminates
(if you think about it a little, this is not obvious). So let us interpret a flip operation in
the lifted picture. The flip involves four points in convex position in R2, and their lifted
images form a tetrahedron in R3 (think about why this tetrahedron cannot be “flat”).

The tetrahedron is made up of four triangles; when you look at it from the top, you
see two of the triangles, and when you look from the bottom, you see the other two. In
fact, what you see from the top and the bottom are the lifted images of the two possible
triangulations of the four-point set in R2 that is involved in the flip.
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Here is the crucial fact that follows from Lemma 5.11: The two top triangles come
from the non-Delaunay triangulation before the flip, see Figure 5.9a. The reason is that
both top triangles have the respective fourth point below them, meaning that in R2,
the circumcircles of these triangles contain the respective fourth point—the empty circle
property is violated. In contrast, the bottom two triangles come from the Delaunay
triangulation of the four points: they both have the respective fourth point above them,
meaning that in R2, the circumcircles of the triangles do not contain the respective fourth
point, see Figure 5.9b.

(a) Before the flip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 5.9: Lawson flip: the height of the surface of lifted triangles decreases.

In the lifted picture, a Lawson flip can therefore be interpreted as an operation that
replaces the top two triangles of a tetrahedron by the bottom two ones. If we consider
the lifted image of the current triangulation, we therefore have a surface in R3 whose
pointwise height can only decrease through Lawson flips. In particular, once an edge
has been flipped, this edge will be strictly above the resulting surface and can therefore
never be flipped a second time. Since n points can span at most

(
n
2

)
edges, the bound

on the number of flips follows.

5.4 Correctness of the Lawson Flip Algorithm

It remains to show that the triangulation of P that we get upon termination of the
Lawson flip algorithm is indeed a Delaunay triangulation. Here is a first observation
telling us that the triangulation is “locally Delaunay”.

Observation 5.12. Let ∆,∆ ′ be two adjacent triangles in the triangulation D that results
from the Lawson flip algorithm. Then the circumcircle of ∆ does not have any
vertex of ∆ ′ in its interior, and vice versa.

If the two triangles together form a convex quadrilateral, this follows from the fact
that the Lawson flip algorithm did not flip the common edge of ∆ and ∆ ′. If the four
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vertices are not in convex position, this is basic geometry: given a triangle ∆, its cir-
cumcircle C can only contains points of C \∆ that form a convex quadrilateral with the
vertices of ∆.

Now we show that the triangulation is also “globally Delaunay”.

Proposition 5.13. The triangulation D that results from the Lawson flip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point
p ∈ P strictly inside the circumcircle C of ∆. Among all such pairs (∆,p), we choose one
for which we the distance of p to ∆ is minimal. Note that this distance is positive since
D is a triangulation of P. The situation is as depicted in Figure 5.10a.

q

∆

p

(a) A point p inside the cir-
cumcircle C of a triangle ∆.

q

∆

p

q

∆ ′

e

(b) The edge e of ∆ closest to p
and the second triangle ∆ ′

incident to e.

∆

p

q

∆ ′

e

C ′
C

(c) The circumcircle C ′ of ∆ ′ also
contains p, and p is closer to
∆ ′ than to ∆.

Figure 5.10: Correctness of the Lawson flip algorithm.

Now consider the edge e of ∆ that is facing p. There must be another triangle ∆ ′ in
D that is incident to the edge e. By the local Delaunay property of D, the third vertex q
of ∆ ′ is on or outside of C, see Figure 5.10b. But then the circumcircle C ′ of ∆ ′ contains
the whole portion of C on p’s side of e, hence it also contains p; moreover, p is closer to
∆ ′ than to ∆ (Figure 5.10c). But this is a contradiction to our choice of ∆ and p. Hence
there was no (∆,p), and D is a Delaunay triangulation.

Exercise 5.14. The Euclidean minimum spanning tree (EMST) of a finite point set
P ⊂ R2 is a spanning tree for which the sum of the edge lengths is minimum (among
all spanning trees of P). Show:

(a) Every EMST of P is a plane graph.

(b) Every EMST of P contains a closest pair, i.e., an edge between two points
p,q ∈ P that have minimum distance to each other among all point pairs in(
P
2

)
.

(c) Every Delaunay Triangulation of P contains an EMST of P.
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5.5 The Delaunay Graph

Despite the fact that a point set may have more than one Delaunay triangulation, there
are certain edges that are present in every Delaunay triangulation, for instance, the edges
of the convex hull.

Definition 5.15. The Delaunay graph of P ⊆ R2 consists of all line segments pq, for
p,q ∈ P, that are contained in every Delaunay triangulation of P.

The following characterizes the edges of the Delaunay graph.

Lemma 5.16. The segment pq, for p,q ∈ P, is in the Delaunay graph of P if and only
if there exists a circle through p and q that has p and q on its boundary and all
other points of P are strictly outside.

Proof. “⇒”: Let pq be an edge in the Delaunay graph of P, and let D be a Delaunay
triangulation of P. Then there exists a triangle ∆ = pqr in D, whose circumcircle C does
not contain any point from P in its interior.

If there is a point s on ∂C such that rs intersects pq, then let ∆ ′ = pqt denote the
other (6= ∆) triangle in D that is incident to pq (Figure 5.11a). Flipping the edge pq
to rt yields another Delaunay triangulation of P that does not contain the edge pq, in
contradiction to pq being an edge in the Delaunay graph of P. Therefore, there is no
such point s.

p

q

r

s
C

∆

t

∆ ′

(a) Another point s ∈ ∂C.

p

q

r

C

∆

C ′

(b) Moving C away from s.

Figure 5.11: Characterization of edges in the Delaunay graph (I).

Otherwise we can slightly change the circle C by moving away from r while keeping
p and q on the circle. As P is a finite point set, we can do such a modification without
catching another point from P with the circle. In this way we obtain a circle C ′ through
p and q such that all other points from P are strictly outside C ′ (Figure 5.12b).

“⇐”: Let D be a Delaunay triangulation of P. If pq is not an edge of D, there must
be another edge of D that crosses pq (otherwise, we could add pq to D and still have
a plane graph, a contradiction to D being a triangulation of P). Let rs denote the first
edge of D that intersects the directed line segment pq.
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Consider the triangle ∆ of D that is incident to rs on the side that faces p (given
that rs intersects pq this is a well defined direction). By the choice of rs neither of the
other two edges of ∆ intersects pq, and p /∈ ∆◦ because ∆ is part of a triangulation of P.
The only remaining option is that p is a vertex of ∆ = prs. As ∆ is part of a Delaunay
triangulation, its circumcircle C∆ is empty (i.e., C∆◦ ∩ P = ∅).

Consider now a circle C through p and q, which exists by assumption. Fixing p and q,
expand C towards r to eventually obtain the circle C ′ through p, q, and r (Figure 5.12a).
Recall that r and s are on different sides of the line through p and q. Therefore, s lies
strictly outside of C ′. Next fix p and r and expand C ′ towards s to eventually obtain the
circle C∆ through p, r, and s (Figure 5.12b). Recall that s and q are on the same side
of the line through p and r. Therefore, q ∈ C∆, which is in contradiction to C∆ being
empty. It follows that there is no Delaunay triangulation of P that does not contain the
edge pq.

p

q

r

s

C ′
C

∆

(a) Expanding C towards r.

p

q

r

s
C ′

C∆

∆

(b) Expanding C ′ towards s.

Figure 5.12: Characterization of edges in the Delaunay graph (II).

The Delaunay graph is useful to prove uniqueness of the Delaunay triangulation in
case of general position.

Corollary 5.17. Let P ⊂ R2 be a finite set of points in general position, that is, no four
points of P are cocircular. Then P has a unique Delaunay triangulation.

5.6 Every Delaunay Triangulation Maximizes the Smallest Angle

Why are we actually interested in Delaunay triangulations? After all, having empty
circumcircles is not a goal in itself. But it turns out that Delaunay triangulations satisfy
a number of interesting properties. Here we show just one of them.

Recall that when we compared a scan triangulation with a Delaunay triangulation of
the same point set in Figure 5.3, we claimed that the scan triangulation is “ugly” because
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it contains many long and skinny triangles. The triangles of the Delaunay triangulation,
at least in this example, look much nicer, that is, much closer to an equilateral triangle.
One way to quantify this “niceness” is to look at the angles that appear in a triangulation:
If all angles are large, then all triangles are reasonably close to an equilateral triangle.
Indeed, we will show that Delaunay triangulations maximize the smallest angle among
all triangulations of a given point set. Note that this does not imply that there are no
long and skinny triangles in a Delaunay triangulation. But if there is a long and skinny
triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle
in every triangulation of the point set.

Given a triangulation T of P, consider the sorted sequence A(T) = (α1,α2, . . . ,α3m)
of interior angles, where m is the number of triangles (we have already remarked earlier
that m is a function of P only and does not depend on T). Being sorted means that
α1 6 α2 6 · · · 6 α3m. Let T,T ′ be two triangulations of P. We say that A(T) < A(T ′)
if there exists some i for which αi < α ′i and αj = α

′
j, for all j < i. (This is nothing but

the lexicographic order on these sequences.)

Theorem 5.18. Let P ⊆ R2 be a finite set of points in general position (not all collinear
and no four cocircular). Let D∗ be the unique Delaunay triangulation of P, and let
T be any triangulation of P. Then A(T) 6 A(D∗).

In particular, D∗ maximizes the smallest angle among all triangulations of P.

α1

α4

α2α1

α3

α2

α4 α3

p

q

r

s

(a) Four cocircular points and the
induced eight angles.

α1

α4

α2α1
α3

α2

α4 α3

(b) The situation before a flip.

Figure 5.13: Angle-optimality of Delaunay triangulations.

Proof. We know that T can be transformed into D∗ through the Lawson flip algorithm,
and we are done if we can show that each such flip lexicographically increases the sorted
angle sequence. A flip replaces six interior angles by six other interior angles, and we
will actually show that the smallest of the six angles strictly increases under the flip.
This implies that the whole angle sequence increases lexicographically.
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Let us first look at the situation of four cocircular points, see Figure 5.13a. In this
situation, the inscribed angle theorem (a generalization of Thales’ Theorem, stated
below as Theorem 5.19) tells us that the eight depicted angles come in four equal pairs.
For instance, the angles labeled α1 at s and r are angles on the same side of the chord
pq of the circle.

In Figure 5.13b, we have the situation in which we perform a Lawson flip (replacing
the solid with the dashed diagonal). By the symbol α (α, respectively) we denote an
angle strictly smaller (larger, respectively) than α. Here are the six angles before the
flip:

α1 + α2, α3, α4, α1, α2, α3 + α4.

After the flip, we have

α1, α2, α3, α4, α1 + α4, α2 + α3.

Now, for every angle after the flip there is at least one smaller angle before the flip:

α1 > α1,
α2 > α2,
α3 > α3,
α4 > α4,

α1 + α4 > α4,
α2 + α3 > α3.

It follows that the smallest angle strictly increases.

Theorem 5.19 (Inscribed Angle Theorem). Let C be a circle with center c and positive
radius and p,q ∈ C. Then the angle \prqmodπ = 1

2\pcq is the same, for all r ∈ C.

p

q

r

s

t

C

2θ

θ

θ

π− θ

c

π+ θ

Figure 5.14: The Inscribed Angle Theorem with θ := \prq.
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Proof. Without loss of generality we may assume that c is located to the left of or on
the oriented line pq.

Consider first the case that the triangle ∆ = pqr

contains c. Then ∆ can be partitioned into three trian-
gles: pcr, qcr, and cpq. All three triangles are isosce-
les, because two sides of each form the radius of C. De-
note α = \prc, β = \crq, γ = \cpq, and δ = \pcq

(see the figure shown to the right). The angles we are
interested in are θ = \prq = α + β and δ, for which
we have to show that δ = 2θ.

Indeed, the angle sum in ∆ is π = 2(α + β + γ)
and the angle sum in the triangle cpq is π = δ + 2γ.
Combining both yields δ = 2(α+ β) = 2θ.

p

q

r

C

δ

α

c

β

β

α γ
γ

Next suppose that pqcr are in convex position and
r is to the left of or on the oriented line pq. Without
loss of generality let r be to the left of or on the oriented
line qc. (The case that r lies to the right of or on the
oriented line pc is symmetric.) Define α, β, γ, δ as
above and observe that θ = α−β. Again have to show
that δ = 2θ.

The angle sum in the triangle cpq is π = δ + 2γ
and the angle sum in the triangle rpq is π = (α−β) +
α+γ+(γ−β) = 2(α+γ−β). Combining both yields
δ = π− 2γ = 2(α− β) = 2θ. p

q

r

C

δ

c

α

α
β

γ

γ

β

It remains to consider the case that r is to the right of the
oriented line pq.

Consider the point r ′ that is antipodal to r on C, and the
quadrilateral Q = prqr ′. We are interested in the angle φ of
Q at r. By Thales’ Theorem the inner angles of Q at p and q
are both π/2. Hence the angle sum of Q is 2π = θ+φ+2π/2
and so φ = π− θ.

p q

r

C

c

θ

φ

π
2

r ′

π
2

What happens in the case where the Delaunay triangulation is not unique? The
following still holds.

Theorem 5.20. Let P ⊆ R2 be a finite set of points, not all on a line. Every Delaunay
triangulation D of P maximizes the smallest angle among all triangulations T of P.

Proof. LetD be some Delaunay triangulation of P. We infinitesimally perturb the points
in P such that no four are on a common circle anymore. Then the Delaunay triangulation
becomes unique (Corollary 5.17). Starting from D, we keep applying Lawson flips until

92



Geometry: C&A 2017 5.7. Constrained Triangulations

we reach the unique Delaunay triangulation D∗ of the perturbed point set. Now we
examine this sequence of flips on the original unperturbed point set. All these flips must
involve four cocircular points (only in the cocircular case, an infinitesimal perturbation
can change “good” edges into “bad” edges that still need to be flipped). But as Figure 5.13
(a) easily implies, such a “degenerate” flip does not change the smallest of the six involved
angles. It follows that D and D∗ have the same smallest angle, and since D∗ maximizes
the smallest angle among all triangulations T (Theorem 5.18), so does D.

5.7 Constrained Triangulations

Sometimes one would like to have a Delaunay triangulation, but certain edges are already
prescribed, for example, a Delaunay triangulation of a simple polygon. Of course, one
cannot expect to be able to get a proper Delaunay triangulation where all triangles satisfy
the empty circle property. But it is possible to obtain some triangulation that comes as
close as possible to a proper Delaunay triangulation, given that we are forced to include
the edges in E. Such a triangulation is called a constrained Delaunay triangulation, a
formal definition of which follows.

Let P ⊆ R2 be a finite point set and G = (P,E) a geometric graph with vertex set
P (we consider the edges e ∈ E as line segments). A triangulation T of P respects G if
it contains all segments e ∈ E. A triangulation T of P that respects G is said to be a
constrained Delaunay triangulation of P with respect to G if the following holds for
every triangle ∆ of T:

The circumcircle of ∆ contains only points q ∈ P in its interior that are not
visible from the interior of ∆. A point q ∈ P is visible from the interior of
∆ if there exists a point p in the interior of ∆ such that the line segment pq
does not intersect any segment e ∈ E. We can thus imagine the line segments
of E as “blocking the view”.

For illustration, consider the simple polygon and its constrained Delaunay triangula-
tion shown in Figure 5.15. The circumcircle of the shaded triangle ∆ contains a whole
other triangle in its interior. But these points cannot be seen from ∆◦, because all
possible connecting line segments intersect the blocking polygon edge e of ∆.

Theorem 5.21. For every finite point set P and every plane graph G = (P,E), there
exists a constrained Delaunay triangulation of P with respect to G.

Exercise 5.22. Prove Theorem 5.21. Also describe a polynomial algorithm to construct
such a triangulation.

Questions

19. What is a triangulation? Provide the definition and prove a basic property: every
triangulation with the same set of vertices and the same outer face has the same
number of triangles.
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∆
e

Figure 5.15: Constrained Delaunay triangulation of a simple polygon.

20. What is a triangulation of a point set? Give a precise definition.

21. Does every point set (not all points on a common line) have a triangulation?
You may, for example, argue with the scan triangulation.

22. What is a Delaunay triangulation of a set of points? Give a precise definition.

23. What is the Delaunay graph of a point set? Give a precise definition and a
characterization.

24. How can you prove that every set of points (not all on a common line) has a
Delaunay triangulation? You can for example sketch the Lawson flip algorithm
and the Lifting Map, and use these to show the existence.

25. When is the Delaunay triangulation of a point set unique? Show that general
position is a sufficient condition. Is it also necessary?

26. What can you say about the “quality” of a Delaunay triangulation? Prove
that every Delaunay triangulation maximizes the smallest interior angle in the
triangulation, among the set of all triangulations of the same point set.
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