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Chapter 2

Plane Embeddings

Graphs can be represented in a variety of ways, for instance, as an adjacency matrix or
using adjacency lists. In this chapter we explore another type of representations that
are quite different in nature, namely geometric representations of graphs. Geometric
representations are appealing because they allow to visualize a graph along with a variety
of its properties in a succinct manner. There are many degrees of freedom in selecting
the type of geometric objects and the details of their geometry. This freedom allows to
tailor the representation to meet specific goals, such as emphasizing certain structural
aspects of the graph at hand or reducing the complexity of the obtained representation.

The most common type of geometric graph representation is a drawing, where vertices
are mapped to points and edges to curves. Making such a map injective by avoiding edge
crossings is desirable, both from a mathematically aesthetic point of view and for the sake
of the practical readability of the drawing. Those graphs that allow such an embedding
into the Euclidean plane are known as planar. Our goal in the following is to study the
interplay between abstract planar graphs and their plane embeddings. Specifically, we
want to answer the following questions:

� What is the combinatorial complexity of planar graphs (number of edges and faces)?

� Under which conditions are plane embeddings unique (in a certain sense)?

� How can we represent plane embeddings (in a data structure)?

� What is the geometric complexity of plane embeddings, that is, can we bound the
size of the coordinates used and the complexity of the geometric objects used to
represent edges?

Most definitions we use directly extend to multigraphs. But for simplicity, we use the
term “graph” throughout.

2.1 Drawings, Embeddings and Planarity

A curve is a set C ⊂ R2 that is of the form {γ(t) : 0 6 t 6 1}, where γ : [0, 1]→ R2 is a
continuous function. The function γ is called a parameterization of C. The points γ(0)
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and γ(1) are the endpoints of the curve. For a closed curve, we have γ(0) = γ(1). A
curve is simple, if it admits a parameterization γ that is injective on [0, 1]. For a closed
simple curve we allow as an exception that γ(0) = γ(1). The following famous theorem
describes an important property of the plane. A proof can, for instance, be found in the
book of Mohar and Thomassen [22].

Theorem 2.1 (Jordan). Any simple closed curve C partitions the plane into exactly
two regions (connected open sets), each bounded by C.

Figure 2.1: A Jordan curve and two points in one of its faces (left); a simple closed
curve that does not disconnect the torus (right).

Observe that, for instance, on the torus there are closed curves that do not disconnect
the surface (and so the theorem does not hold there).

Drawings. As a first criterion for a reasonable geometric representation of a graph, we
would like to have a clear separation between different vertices and also between a vertex
and non-incident edges. Formally, a drawing of a graph G = (V,E) in the plane is a
function f that assigns

� a point f(v) ∈ R2 to every vertex v ∈ V and

� a simple curve f({u, v}) : [0, 1] → R2 with endpoints f(u) and f(v) to every edge
{u, v} ∈ E,

such that

(1) f is injective on V and

(2) f({u, v}) ∩ f(V) = {f(u), f(v)}, for every edge {u, v} ∈ E.

A common point f(e) ∩ f(e ′) between two curves that represent distinct edges e, e ′ ∈ E
is called a crossing if it is not a common endpoint of e and e ′.

For simplicity, when discussing a drawing of a graph G = (V,E) it is common to treat
vertices and edges as geometric objects. That is, a vertex v ∈ V is treated as the point
f(v) and an edge e ∈ E is treated as the curve f(e). For instance, the last sentence of
the previous paragraph may be phrased as “A common point of two edges that is not a
common endpoint is called a crossing.”
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Often it is convenient to make additional assumptions about the interaction of edges
in a drawing. For example, in a nondegenerate drawing one may demand that no three
edges share a single crossing or that every pair of distinct edges intersects in at most
finitely many points.

Planar vs. plane. A graph is planar if it admits a drawing in the plane without cross-
ings. Such a drawing is also called a crossing-free drawing or a (plane) embedding of
the graph. A planar graph together with a particular plane embedding is called a plane
graph. Note the distinction between “planar” and “plane”: the former indicates the pos-
sibility of an embedding, whereas the latter refers to a concrete embedding (Figure 2.2).

Figure 2.2: A planar graph (left) and a plane embedding of it (right).

A geometric graph is a graph together with a drawing, in which all edges are realized
as straight-line segments. Note that such a drawing is completely defined by the mapping
for the vertices. A plane geometric graph is also called a plane straight-line graph
(PSLG). In contrast, a plane graph in which the edges may form arbitrary simple curves
is called a topological plane graph.

The faces of a plane graph are the maximally connected regions of the plane that
do not contain any point used by the embedding (as the image of a vertex or an edge).
Each embedding of a finite graph has exactly one unbounded face, also called outer or
infinite face. Using stereographic projection, it is not hard to show that the role of the
unbounded face is not as special as it may seem at first glance.

Theorem 2.2. If a graph G has a plane embedding in which some face is bounded by
the cycle (v1, . . . , vk), then G also has a plane embedding in which the unbounded
face is bounded by the cycle (v1, . . . , vk).

Proof. (Sketch) Take a plane embedding Γ of G and map it to the sphere using stere-
ographic projection : Imagine R2 being the x/y-plane in R3 and place a unit sphere
S such that its south pole touches the origin. We obtain a bijective continuous map
between R2 and S \ {n}, where n is the north pole of S, as follows: A point p ∈ R2 is
mapped to the point p ′ that is the intersection of the line through p and n with S, see
Figure 2.3.

Consider the resulting embedding Γ ′ of G on S: The infinite face of Γ corresponds
to the face of Γ ′ that contains the north pole n of S. Now rotate the embedding Γ ′ on
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(b) Cross-section view.

Figure 2.3: Stereographic projection.

S such that the desired face contains n. Mapping back to the plane using stereographic
projection results in an embedding in which the desired face is the outer face.

Exercise 2.3. Consider the plane graphs depicted in Figure 2.4. For both graphs give
a plane embedding in which the cycle 1, 2, 3 bounds the outer face.
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Figure 2.4: Make 1, 2, 3 bound the outer face.

Duality. Every plane graph G has a dual G∗, whose vertices are the faces of G and
two are connected by an edge in G∗, if and only if they have a common edge in G. In
general, G∗ is a multigraph (may contain loops and multiple edges) and it depends on
the embedding. That is, an abstract planar graph G may have several non-isomorphic
duals. If G is a connected plane graph, then (G∗)∗ = G. We will see later in Section 2.3
that the dual of a 3-connected planar graph is unique (up to isomorphism).

The Euler Formula and its ramifications. One of the most important tools for planar graphs
(and more generally, graphs embedded on a surface) is the Euler–Poincaré Formula.

Theorem 2.4 (Euler’s Formula). For every connected plane graph with n vertices, e
edges, and f faces, we have n− e+ f = 2.

18



Geometry: C&A 2017 2.1. Drawings, Embeddings and Planarity
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Figure 2.5: Two plane drawings and their duals for the same planar graph.

In particular, this shows that for any planar graph the number of faces is the same
in every plane embedding. In other words the number of faces is an invariant of an
abstract planar graph. It also follows (stated below as a corollary) that planar graphs
are sparse, that is, they have a linear number of edges (and faces) only. So the asymptotic
complexity of a planar graph is already determined by its number of vertices.

Corollary 2.5. A simple planar graph on n > 3 vertices has at most 3n− 6 edges and
at most 2n− 4 faces.

Proof. Without loss of generality we may assume that G is connected. (If not, add edges
between components of G until the graph is connected. The number of faces remains
unchanged and the number of edges only increases.) The statement is easily checked for
n = 3, where G is either a triangle or a path and, therefore, has no more than 3 ·3−6 = 3
edges and no more than 2 ·3−4 = 2 faces. So consider a simple planar graph G on n > 4
vertices. Consider a plane drawing of G and denote by E the set of edges and by F the
set of faces of G. Let

X = {(e, f) ∈ E× F : e bounds f}

denote the set of incident edge-face pairs. We count X in two different ways.
First note that each edge bounds at most two faces and so |X| 6 2 · |E|.
Second note that in a simple connected planar graph on four or more vertices every

face is bounded by at least three vertices: Every bounded face needs at least three edges
to be enclosed and if there is no cycle on the boundary of the unbounded face, then—
given that G is connected—G must be a tree on four or more vertices and so its has at
least three edges, all of which bound the unbounded face. Therefore |X| > 3 · |F|.

Using Euler’s Formular we conclude that

4 = 2n− 2|E|+ 2|F| 6 2n− 3|F|+ 2|F| = 2n− |F| and
6 = 3n− 3|E|+ 3|F| 6 3n− 3|E|+ 2|E| = 3n− |E| ,

which yields the claimed bounds.

It also follows that the degree of a “typical” vertex in a planar graph is a small
constant. There exist several variations of this statement, a few more of which we will
encounter during this course.
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Corollary 2.6. The average vertex degree in a simple planar graph is less than six.

Exercise 2.7. Prove Corollary 2.6.

Exercise 2.8. Show that neither K5 (the complete graph on five vertices) nor K3,3 (the
complete bipartite graph where both classes have three vertices) is planar.

Characterizing planarity. The classical theorems of Kuratowski and Wagner provide a char-
acterization of planar graphs in terms of forbidden sub-structures. A subdivision of a
graph G = (V,E) is a graph that is obtained from G by replacing each edge with a path.

Theorem 2.9 (Kuratowski [20, 27]). A graph is planar if and only if it does not contain
a subdivision of K3,3 or K5.

A minor of a graph G = (V,E) is a graph that is obtained from G using zero or more
edge contractions, edge deletions, and/or vertex deletions.

Theorem 2.10 (Wagner [30]). A graph is planar if and only if it does not contain K3,3

or K5 as a minor.

In some sense, Wagner’s Theorem is a special instance1 of a much more general
theorem.

Theorem 2.11 (Graph Minor Theorem, Robertson/Seymour [25]). Every minor-closed
family of graphs can be described in terms of a finite set of forbidden minors.

Being minor-closed means that for every graph from the family also all of its minors
belong to the family. For instance, the family of planar graphs is minor-closed because
planarity is preserved under removal of edges and vertices and under edge contractions.
The Graph Minor Theorem is a celebrated result that was established by Robertson and
Seymour in a series of twenty papers, see also the survey by Lovász [21]. They also
described an O(n3) algorithm (with horrendous constants, though) to decide whether a
graph on n vertices contains a fixed (constant-size) minor. Later, Kawarabayashi et al. [18]
showed that this problem can be solved in O(n2) time. As a consequence, every minor-
closed property can be decided in polynomial time.

Unfortunately, the result is non-constructive in the sense that in general we do not
know how to obtain the set of forbidden minors for a given family/property. For instance,
for the family of toroidal graphs (graphs that can be embedded without crossings on the
torus) more than 16 ′000 forbidden minors are known, and we do not know how many
there are in total. So while we know that there exists a quadratic time algorithm to test
membership for minor-closed families, we have no idea what such an algorithm looks like
in general.

Graph families other than planar graphs for which the forbidden minors are known
include forests (K3) and outerplanar graphs (K2,3 and K4). A graph is outerplanar if it
admits a plane drawing such that all vertices appear on the outer face (Figure 2.6).

1Strictly speaking, it is more than just a special instance because it also specifies the forbidden minors
explicitly.
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Figure 2.6: An outerplanar graph (left) and a plane drawing of it in which all vertices
are incident to the outer face (right).

Exercise 2.12. (a) Give an example of a 6-connected planar graph or argue that no
such graph exists.

(b) Give an example of a 5-connected planar graph or argue that no such graph
exists.

(c) Give an example of a 3-connected outerplanar graph or argue that no such
graph exists.

Planarity testing. For planar graphs we do not have to contend ourselves with a cubic-
time algorithm, as there are several approaches to solve the problem in linear time. In
fact, there is quite a number of papers that describe different linear time algorithms, all
of which—from a very high-level point of view—can be regarded as an annotated depth-
first-search. The first such algorithm was described by Hopcroft and Tarjan [17], while
the current state-of-the-art is probably among the “path searching” method by Boyer
and Myrwold [5] and the “LR-partition” method by de Fraysseix et al [13]. Although the
overall idea in all these approaches is easy to convey, there are many technical details,
which make a in-depth discussion rather painful to go through.

2.2 Graph Representations

There are two standard representations for an abstract graph G = (V,E) on n = |V |

vertices. For the adjacency matrix representation we consider the vertices to be ordered
as V = {v1, . . . , vn}. The adjacency matrix of an undirected graph is a symmetric n×n-
matrix A = (aij)16i,j6n where aij = aji = 1, if {i, j} ∈ E, and aij = aji = 0, otherwise.
Storing such a matrix explicitly requires Ω(n2) space, and allows to test in constant time
whether or not two given vertices are adjacent.

In an adjacency list representation, we store for each vertex a list of its neighbors in
G. This requires only O(n+ |E|) storage, which is better than for the adjacency matrix in
case that |E| = o(n2). On the other hand, the adjacency test for two given vertices is not
a constant-time operation, because it requires a search in one of the lists. Depending on
the representation of these lists, such a search takes O(d) time (unsorted list) or O(logd)
time (sorted random-access representation, such as a balanced search tree), where d is
the minimum degree of the two vertices.
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Both representations have their merits. The choice of which one to use (if any)
typically depends on what one wants to do with the graph. When dealing with embedded
graphs, however, additional information concerning the embedding is needed beyond
the pure incidence structure of the graph. The next section discusses a standard data
structure to represent embedded graphs.

2.2.1 The Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a data structure to represent a plane graph
in such a way that it is easy to traverse and to manipulate. In order to avoid unnecessary
complications, let us discuss only connected graphs here that contain at least two vertices.
It is not hard to extend the data structure to cover all plane graphs. For simplicity we
also assume that we deal with a straight-line embedding and so the geometry of edges
is defined by the mapping of their endpoints already. For more general embeddings, the
geometric description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is
represented by two halfedges going in opposite direction, and these are called twins, see
Figure 2.7. Along the boundary of each face, halfedges are oriented counterclockwise.

h

next(h)

prev(h)

twin(h)

target(h)

face(h)

Figure 2.7: A halfedge in a DCEL.

A DCEL stores a list of halfedges, a list of vertices, and a list of faces. These lists are
unordered but interconnected by various pointers. A vertex v stores a pointer halfedge(v)
to an arbitrary halfedge originating from v. Every vertex also knows its coordinates, that
is, the point point(v) it is mapped to in the represented embedding. A face f stores a
pointer halfedge(f) to an arbitrary halfedge within the face. A halfedge h stores five
pointers:

� a pointer target(h) to its target vertex,

� a pointer face(h) to the incident face,

� a pointer twin(h) to its twin halfedge,
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� a pointer next(h) to the halfedge following h along the boundary of face(h), and

� a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V |+ |E|+ |F|, which is
O(n) for a plane graph with n vertices by Corollary 2.5.

This information is sufficient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s← halfedge(f)
h← s

do
something with h
h← next(h)

while h 6= s

Exercise 2.13. Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 2.14. Why is the previous halfedge prev(·) stored explicitly and the source
vertex of a halfedge is not?

2.2.2 Manipulating a DCEL

In many applications, plane graphs appear not just as static objects but rather they
evolve over the course of an algorithm. Therefore the data structure used to represent
the graph must allow for efficient update operations to change it.

First of all, we need to be able to generate new vertices, edges, and faces, to be added
to the corresponding list within the DCEL and—symmetrically—the ability to delete an
existing entity. Then it should be easy to add a new vertex v to the graph within some
face f. As we maintain a connected graph, we better link the new vertex to somewhere,
say, to an existing vertex u. For such a connection to be possible, we require that the
open line segment uv lies completely in f.

Of course, two halfedges are to be added connecting u and v. But where exactly?
Given that from a vertex and from a face only some arbitrary halfedge is directly accessi-
ble, it turns out convenient to use a halfedge in the interface. Let h denote the halfedge
incident to f for which target(h) = u. Our operation then becomes (see also Figure 2.8)

add-vertex-at(v,h)
Precondition: the open line segment point(v)point(u), where u := target(h),

lies completely in f := face(h).
Postcondition: a new vertex v has been inserted into f, connected by an edge

to u.
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Figure 2.8: Add a new vertex connected to an existing vertex u.

and it can be realized by manipulating a constant number of pointers as follows.

add-vertex-at(v,h) {
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(v)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

face(h1)← f

face(h2)← f

next(h1)← h2

next(h2)← next(h)
prev(h1)← h

prev(h2)← h1

next(h)← h1

prev(next(h2))← h2

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 2.9. Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we use the halfedge h that is incident to f and for which target(h) = u.
Our operation becomes then

split-face(h, v)
Precondition: v is incident to f := face(h) but not adjacent to u := target(h).

The open line segment point(v)point(u) lies completely in f.
Postcondition: f has been split by a new edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident
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Figure 2.9: Split a face by an edge uv.

halfedges. In particular, this is not a constant time operation, but its time complexity
is proportional to the size of f.

split-face(h, v) {
f1 ← a new face
f2 ← a new face
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(f1)← h1

halfedge(f2)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

next(h2)← next(h)
prev(next(h2))← h2

prev(h1)← h

next(h)← h1

i← h2

loop
face(i)← f2
if target(i) = v break the loop
i← next(i)

endloop
next(h1)← next(i)
prev(next(h1))← h1

next(i)← h2

prev(h2)← i

i← h1

do
face(i)← f1
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i← next(i)
until target(i) = u
delete the face f

}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge (represented by the halfedge) h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K2 (two vertices connected by an edge).

Exercise 2.15. Give pseudocode for the operation join-face(h). Also specify precondi-
tions, if needed.

Exercise 2.16. Give pseudocode for the operation split-edge(h), that splits the edge
(represented by the halfedge) h into two by a new vertex w, see Figure 2.10.
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(b) after

Figure 2.10: Split an edge by a new vertex.

2.2.3 Graphs with Unbounded Edges

In some cases it is convenient to consider plane graphs, in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much different from the one we studied before, except that one vertex is placed “at
infinity”. One way to think of it is in terms of stereographic projection (see the proof of
Theorem 2.2). The further away a point in R2 is from the origin, the closer its image on
the sphere S gets to the north pole n of S. But there is no way to reach n except in the
limit. Therefore, we can imagine drawing the graph on S instead of in R2 and putting
the “infinite vertex” at n.

All this is just for the sake of a proper geometric interpretation. As far as a DCEL
representation of such a graph is concerned, there is no need to consider spheres or, in
fact, anything beyond what we have discussed before. The only difference to the case
with all finite edges is that there is this special infinite vertex, which does not have any

26



Geometry: C&A 2017 2.2. Graph Representations

∞

Figure 2.11: A DCEL with unbounded edges. Usually, we will not show the infi-
nite vertex and draw all edges as straight-line segments. This yields a
geometric drawing, like the one within the gray box.

point/coordinates associated to it. But other than that, the infinite vertex is treated
in exactly the same way as the finite vertices: it has in– and outgoing halfedges along
which the unbounded faces can be traversed (Figure 2.11).

Remarks. It is actually not so easy to point exactly to where the DCEL data struc-
ture originates from. Often Muller and Preparata [23] are credited, but while they use
the term DCEL, the data structure they describe is different from what we discussed
above and from what people usually consider a DCEL nowadays. Overall, there are a
large number of variants of this data structure, which appear under the names winged
edge data structure [3], halfedge data structure [31], or quad-edge data structure [15].
Kettner [19] provides a comparison of all these and some additional references.

2.2.4 Combinatorial Embeddings

The DCEL data structure discussed in the previous section provides a fully fleshed-out
representation of what is called a combinatorial embedding. From a mathematical point
of view this can be regarded an equivalence relation on embeddings: Two embeddings are
equivalent if their face boundaries—regarded as circular sequences of edges (or vertices)
in counterclockwise order—are the same (as sets) up to a global change of orientation
(reversing the order of all sequences simultaneously). For instance, the faces of the plane
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graphs shown in Figure 2.12a are (each face is described as a circular sequence of vertices)

(a) : {(1, 2, 3), (1, 3, 6, 4, 5, 4), (1, 4, 6, 3, 2)} ,
(b) : {(1, 2, 3, 6, 4, 5, 4), (1, 3, 2), (1, 4, 6, 3)} , and
(c) : {(1, 4, 5, 4, 6, 3), (1, 3, 2), (1, 2, 3, 6, 4)} .

Note that a vertex can appear several times along the boundary of a face (if it is a
cut-vertex). Clearly (b) is not equivalent to (a) nor (c), because it is the only graph
that contains a face bounded by seven vertices. However, (a) and (c) turn out to be
equivalent: after reverting orientations f1 takes the role of h2, f2 takes the role of h1,
and f3 takes the role of h3.

1

2

3

4

5
6f1 f2

f3

(a)

1

2

3

4

5
6

g2

g1

g3

(b)

1

2

3

4

6 5

h2

h1
h3

(c)

Figure 2.12: Equivalent embeddings?

Exercise 2.17. Let G be a planar graph with vertex set {1, . . . , 9}. Try to find an
embedding corresponding to the following list of circular sequences of faces:

(a) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 5, 4)}

(b) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 4, 5)}

In a dual interpretation one can just as well define equivalence in terms of the cyclic
order of neighbors around all vertices. In this form, a compact way to describe a com-
binatorial embedding is as a so-called rotation system that consists of a permutation π
and an involution ρ, both of which are defined on the set of halfedges (in this context
often called darts or flags) of the embedding. The orbits of π correspond to the vertices,
as they iterate over the incident halfedges. The involution ρ maps each halfedge to its
twin.

Many people prefer this dual view, because one does not have to discuss the issue
of vertices or edges that appear several times on the boundary of a face. The following
lemma shows that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.18. In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is probably clear. But
we believe it is instructive to think about how to make a formal argument. An easy
consequence is the following corollary, whose proof we also leave as an exercise.
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Corollary 2.19. In a 3-connected plane graph the neighbors of a vertex lie on a cycle.

Note that the statement does not read “form a cycle” but rather “lie on a cycle”.

Exercise 2.20. Prove Lemma 2.18 and Corollary 2.19.

2.3 Unique Embeddings

We have seen in Lemma 2.18 that all faces in biconnected plane graphs are bounded by
cycles. Conversely one might wonder which cycles of a planar graph G bound a face in
some plane embedding of G. Such a cycle is called a facial cycle (Figure 2.13).

1

2

3

4

5

Figure 2.13: The cycle (1, 2, 3) is facial and we can show that (2, 3, 4) is not.

In fact, we will look at a slightly different class of cycles, namely those that bound a
face in every plane embedding of G. The lemma below provides a complete character-
ization of those cycles. In order to state it, let us introduce a bit more terminology. A
chord of a cycle C in a graph G is an edge that connects two vertices of C but is not an
edge of C. A cycle C in a graph G is an induced cycle, if C = G[V(C)], that is, C does
not have any chord in G.

Lemma 2.21. Let C be a cycle in a planar graph G such that G 6= C and G is not C
plus a single chord of C. Then C bounds a face in every plane embedding of G if
and only if C is an induced cycle and it is not separating (i.e., G \C is connected).

Proof. “⇐”: Consider any plane embedding Γ of G. As G\C is connected, by the Jordan
Curve Theorem it is contained either in the interior of C or in the exterior of C in Γ .
In either case, the other component of the plane is bounded by C, because there are no
edges among the vertices of C.

“⇒": Using contraposition, suppose that C is not induced or G \ C is disconnected.
We have to show that there exists a plane embedding of G in which C does not bound
a face.

If C is not induced, then there is a chord c of C in G. As G 6= C ∪ c, either G has a
vertex v that is not in C or G contains another chord d 6= c of C. In either case, consider
any plane embedding Γ of G in which C bounds a face. (If such an embedding does not
exist, there is nothing to show.) We can modify Γ by drawing the chord c in the face
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bounded by C to obtain an embedding Γ ′ of G in which C does not bound a face: one of
the two regions bounded by C according to the Jordan Curve Theorem contains c and
the other contains either the vertex v or the other chord d.

If G \C contains two components A and B, then consider a plane embedding Γ of G.
If C is not a face in Γ , there is nothing to show. Hence suppose that C is a face of Γ
(Figure 2.14a). From Γ we obtain induced plane embeddings ΓA of G \ B = A ∪ C and
ΓB of G \A = B ∪ C. Using Theorem 2.2 we may suppose that C bounds the outer face
in ΓA and it does not bound the outer face in ΓB. Then we can glue both embeddings at
C, that is, extend ΓB to an embedding of G by adding ΓA within the face bounded by C
(Figure 2.14b). The resulting embedding is a plane drawing of G in which C does not
bound a face.

C

A

B

(a)

C

B

A

(b)

Figure 2.14: Construct a plane embedding of G in which C does not bound a face.

Finally, consider the case that G \ C = ∅ (which is not a connected graph according
to our definition). As we considered above the case that C is not an induced cycle, the
only remaining case is G = C, which is excluded explicitly.

For both special cases for G that are excluded in Lemma 2.21 it is easy to see that all
cycles in G bound a face in every plane embedding. This completes the characterization.
Also observe that in these special cases G is not 3-connected.

Corollary 2.22. A cycle C of a 3-connected planar graph G bounds a face in every plane
embedding of G if and only if C is an induced cycle and it is not separating.

The following theorem tells us that for a wide range of graphs we have little choice
as far as a plane embedding is concerned, at least from a combinatorial point of view.
Geometrically, there is still a lot of freedom, though.

Theorem 2.23 (Whitney [32]). A 3-connected planar graph has a unique combinatorial
plane embedding (up to equivalence).

Proof. Let G be a 3-connected planar graph and suppose there exist two embeddings Φ1

and Φ2 of G that are not equivalent. That is, there is a cycle C = (v1, . . . , vk), k > 3, in
G that bounds a face in, say, Φ1 but C does not bound a face in Φ2. By Corollary 2.22
such a cycle has a chord or it is separating. We consider both options.
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Case 1: C has a chord {vi, vj}, with j > i + 2. Denote A = {vx : i < x < j} and
B = {vx : x < i ∨ j < x} and observe that both A and B are non-empty (because {vi, vj}
is a chord and so vi and vj are not adjacent in C). Given that G is 3-connected, there is
at least one path P from A to B that does not use either of vi or vj. Let a denote the last
vertex of P that is in A, and let b denote the first vertex of P that is in B. As C bounds
a face f in Φ1, we can add a new vertex v inside the face bounded by C and connect v by
four pairwise internally disjoint curves to each of vi, vj, a, and b. The result is a plane
graph G ′ ⊃ G that contains a subdivision of K5 with branch vertices v, vi, vj, a, and b.
By Kuratowski’s Theorem (Theorem 2.9) this contradicts the planarity of G ′.

vj

vi

f
A

B

P

a

b

v

(a) Case 1.

a
b

c1

c2

c3

v

(b) Case 2.

Figure 2.15: Illustration of the two cases in Theorem 2.23.

Case 2: C is separating and, therefore, G \ C contains two distinct components A
and B. (We have G 6= C because G is 3-connected.) Consider now the embedding Φ1

in which C bounds a face, without loss of generality (Theorem 2.2) a bounded face f.
Hence both A and B are embedded in the exterior of f.

Choose vertices a ∈ A and b ∈ B arbitrarily. As G is 3-connected, by Menger’s
Theorem (Theorem 1.2), there are at least three pairwise internally vertex-disjoint paths
from a to b. Fix three such paths α1,α2,α3 and denote by ci the first point of αi that
is on C, for 1 6 i 6 3. Note that c1, c2, c3 are well defined, because C separates A and
B, and they are pairwise distinct. Therefore, {a,b} and {c1, c2, c3} are branch vertices
of a K2,3 subdivision in G. We can add a new vertex v inside the face bounded by
C and connect v by three pairwise internally disjoint curves to each of c1, c2, and c3.
The result is a plane graph G ′ ⊃ G that contains a K3,3 subdivision. By Kuratowski’s
Theorem (Theorem 2.9) this contradicts the planarity of G ′.

In both cases we arrived at a contradiction and so there does not exist such a cycle
C. Thus Φ1 and Φ2 are equivalent.

Whitney’s Theorem does not provide a characterization of unique embeddability,
because there are both biconnected graphs that have a unique plane embedding (such
as cycles) and biconnected graphs that admit several non-equivalent plane embeddings
(for instance, a triangulated pentagon).
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2.4 Triangulating a Plane Graph

We like to study worst case scenarios not so much to dwell on “how bad things could get”
but rather—phrased positively—because worst case examples provide universal bounds
of the form “things are always at least that good”. Most questions related to embeddings
get harder the more edges the graph has because every additional edge needs to avoid
potential crossings with other edges. Therefore, let us study the class of maximal planar
graphs. A graph is maximal planar if no edge can be added so that the resulting graph
is still planar. Corollary 2.5 tells us that a (maximal) planar graph on n vertices cannot
have more than 3n − 6 edges. Yet we would like to learn a bit more about how these
graphs look like.

Lemma 2.24. A maximal planar graph on n > 3 vertices is biconnected.

Proof. Consider a maximal planar graph G = (V,E). We may suppose that G is con-
nected because adding an edge between two distinct components of a planar graph main-
tains planarity. Therefore, if G is not biconnected, then it has a cut-vertex v. Take a
plane drawing Γ of G. As G \ v is disconnected, removal of v also splits NG(v) into at
least two components. Therefore, there are two vertices a,b ∈ NG(v) that are adjacent
in the circular order of vertices around v in Γ and are in different components of G \ v.
In particular, {a,b} /∈ E and we can add this edge to G (routing it very close to the path
(a, v,b) in Γ) without violating planarity. This is in contradiction to G being maximal
planar and so G is biconnected.

Lemma 2.25. In a maximal planar graph on n > 3 vertices, all faces are topological
triangles, that is, every face is bounded by exactly three edges.

Proof. Consider a maximal planar graph G = (V,E) and a plane drawing Γ of G. By
Lemma 2.24 we know that G is biconnected and so by Lemma 2.18 every face of Γ is
bounded by a cycle. Suppose that there is a face f in Γ that is bounded by a cycle
v0, . . . , vk−1 of k > 4 vertices. We claim that at least one of the edges {v0, v2} or {v1, v3}

is not present in G.
Suppose to the contrary that {{v0, v2}, {v1, v3}} ⊆ E. Then we can add a new vertex

v ′ in the interior of f and connect v ′ inside f to all of v0, v1, v2, v3 by an edge (curve)
without introducing a crossing. In other words, given that G is planar, also the graph
G ′ = (V ∪ {v ′},E∪ {{vi, v ′} : i ∈ {0, 1, 2, 3}}) is planar. However, v0, v1, v2, v3, v ′ are branch
vertices of a K5 subdivision in G ′: v ′ is connected to all other vertices within f, along
the boundary ∂f of f each vertex vi is connected to both v(i−1)mod4 and v(i+1)mod4 and
the missing two connections are provided by the edges {v0, v2} and {v1, v3} (Figure 2.16a).
By Kuratowski’s Theorem this is in contradiction to G ′ being planar. Therefore, one of
the edges {v0, v2} or {v1, v3} is not present in G, as claimed.

So suppose without loss of generality that {v1, v3} /∈ E. But then we can add this edge
(curve) within f to Γ without introducing a crossing (Figure 2.16b). It follows that the
edge {v1, v3} can be added to G without sacrificing planarity, which is in contradiction
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Figure 2.16: Every face of a maximal planar graph is a topological triangle.

to G being maximal planar. Therefore, there is no such face f bounded by four or more
vertices.

Many questions for graphs are formulated for connected graphs only because it is
easy to add edges to a non-connected graph to make it connected. For similar reasons
many questions about planar embeddings are formulated for maximal planar graphs only
because it is easy to add edges to a planar graph so as to make it maximal planar. Well,
this last statement is not entirely obvious. Let us look at it in more detail.

An augmentation of a given planar graph G = (V,E) to a maximal planar graph G ′ =
(V,E) with E ′ ⊇ E is also called a topological triangulation. The proof of Lemma 2.25
already contains the basic idea for an algorithm to topologically triangulate a plane
graph.

Theorem 2.26. For a given connected plane graph G = (V,E) on n vertices one can
compute in O(n) time and space a maximal plane graph G ′ = (V,E ′) with E ⊆ E ′.
Proof. Suppose, for instance, that G is represented as a DCEL2, from which one can
easily extract the face boundaries. If some vertex v appears several times along the
boundary of a single face, it is a cut-vertex. We fix this by adding an edge between the
two neighbors of all but the first occurrence of v. This can easily be done in linear time
by maintaining a counter for each vertex on the face boundary. The total number of
edges and vertices along the boundary of all faces is proportional to the number of edges
in G, which by Corollary 2.5 is linear. Hence we may suppose that all faces of G are
bounded by a cycle.

For every face f that is bounded by more than three vertices, select a vertex vf on its
boundary and store with every vertex all faces that select it. Then process every vertex
v as follows: First mark all neighbors of v in G. Then process all faces that selected v.
For each such face f with vf = v iterate over the boundary ∂f = (v, v1, . . . , vk), where
k > 3, of f to test whether there is any marked vertex other than the two neighbors v1

and vk of v along ∂f.
2If you wonder how the—possibly complicated—curves that correspond to edges are represented: they

do not need to be, because here we need a representation of the combinatorial embedding only.
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If there is no such vertex, we can safely triangulate f using a star from v, that is, by
adding the edges {v, vi}, for i ∈ {2, . . . ,k− 1} (Figure 2.17a).

Otherwise, let vx be the first marked vertex in the sequence v2, . . . , vk−1. The
edge {v, vx} that is embedded as a curve in the exterior of f prevents any vertex from
v1, . . . , vx−1 from being connected by an edge in G to any vertex from vx+1, . . . , vk. (This
is exactly the argument that we made in the proof of Lemma 2.25 above for the edges
{v0, v2} and {v1, v3}, see Figure 2.16a.) In particular, we can safely triangulate f using a
bi-star from v1 and vx+1, that is, by adding the edges {v1, vi}, for i ∈ {x + 1, . . . ,k}, and
{vj, vx+1}, for j ∈ {2, . . . , x− 1} (Figure 2.17b).

v1

v3

vk

v

∂f

v2

vk−1

(a) Case 1: v does not have any neighbor
on ∂f other than v1 and vk.

v1

vx

vk

v

f

v2
vk−1

vx+1

(b) Case 2: v has a neighbor vx on ∂f other
than v1 and vk.

Figure 2.17: Topologically triangulating a plane graph.

Finally, conclude the processing of v by removing all marks on its neighbors.
Regarding the runtime bound, note that every face is traversed a constant number

of times. In this way, each edge is touched a constant number of times, which by
Corollary 2.5 uses linear time overall. Similarly, the vertex marking is done at most twice
(mark und unmark) per vertex. Therefore, the overall time needed can be bounded by∑

v∈V degG(v) = 2|E| = O(n) by the Handshaking Lemma and Corollary 2.5.

Theorem 2.27. A maximal planar graph on n > 4 vertices is 3-connected.

Exercise 2.28. Prove Theorem 2.27.

Using any of the standard planarity testing algorithms we can obtain a combinatorial
embedding of a planar graph in linear time. Together with Theorem 2.26 this yields the
following

Corollary 2.29. For a given planar graph G = (V,E) on n vertices one can compute in
O(n) time and space a maximal planar graph G ′ = (V,E ′) with E ⊆ E ′.

The results discussed in this section can serve as a tool to fix the combinatorial
embedding for a given graph G: augment G using Theorem 2.26 to a maximal planar
graph G ′, whose combinatorial embedding is unique by Theorem 2.23.

34



Geometry: C&A 2017 2.5. Compact Straight-Line Drawings

Being maximal planar is a property of an abstract graph. In contrast, a
geometric graph to which no straight-line edge can be added without introduc-
ing a crossing is called a triangulation. Not every triangulation is maximal
planar, as the example depicted to the right shows.

It is also possible to triangulate a geometric graph in linear time. But this problem
is much more involved. Triangulating a single face of a geometric graph amounts to
what is called “triangulating a simple polygon”. This can be done in near-linear3 time
using standard techniques, and in linear time using Chazelle’s famous algorithm, whose
description spans a fourty pages paper [8].

Exercise 2.30. We discussed the DCEL structure to represent plane graphs in Sec-
tion 2.2.1. An alternative way to represent an embedding of a maximal planar
graph is the following: For each triangle, store references to its three vertices and
to its three neighboring triangles. Compare both approaches. Discuss different sce-
narios where you would prefer one over the other. In particular, analyze the space
requirements of both.

Connectivity serves as an important indicator for properties of planar graphs. An-
other example is the following famous theorem of Tutte that provides a sufficient condi-
tion for Hamiltonicity. Its proof is beyond the scope of our lecture.

Theorem 2.31 (Tutte [28]). Every 4-connected planar graph is Hamiltonian.

Moreover, for a given 4-connected planar graph a Hamiltonian cycle can also be
computed in linear time [9].

2.5 Compact Straight-Line Drawings

As a next step we consider plane embeddings in the geometric setting, where every edge
is drawn as a straight-line segment. A classical theorem of Wagner and Fáry states that
this is not a restriction in terms of plane embeddability.

Theorem 2.32 (Fáry [12], Wagner [29]). Every planar graph has a plane straight-line
embedding (that is, it is isomorphic to a plane straight-line graph).

This statement is quite surprising, considering how much more freedom arbitrarily
complex Jordan arcs allow compared to line segments, which are completely determined
by their endpoints. In order to further increase the level of appreciation, let us note that
a similar “straightening” is not possible, when fixing the point set on which the vertices
are to be embedded: For a given planar graph G = (V,E) on n vertices and a given
set P ⊂ R2 of n points, one can always find a plane embedding of G that maps V to
P [24]. However, this is not possible in general with a plane straight-line embedding.
For instance, K4 does not admit a plane straight-line embedding on a set of points that
form a convex quadrilateral, such as a rectangle. In fact, it is NP-hard to decide whether
a given planar graph admits a plane straight-line embedding on a given point set [6].

3O(n logn) or—using more elaborate tools—O(n log∗ n) time
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Exercise 2.33. Show that for every natural number n > 4 there exist a planar graph
G on n vertices and a set P ⊂ R2 of n points in general position (no three points
are collinear) so that G does not admit a plane straight-line embedding on P.

Exercise 2.34. Show that for every set P ⊂ R2 of n > 3 in general position (no
three points are collinear) the cycle Cn on n vertices admits a plane straight-line
embedding on P.

Although Fáry-Wagner’s theorem has a nice inductive proof, we will not discuss it
here. Instead we will prove a stronger statement that implies Theorem 2.32.

A very nice property of straight-line embeddings is that they are easy to represent:
We need to store points/coordinates for the vertices only. From an algorithmic and com-
plexity point of view the space needed by such a representation is important, because
it appears in the input and output size of algorithms that work on embedded graphs.
While the Fáry-Wagner Theorem guarantees the existence of a plane straight-line em-
bedding for every planar graph, it does not provide bounds on the size of the coordinates
used in the representation. But the following strengthening provides such bounds, by
describing an algorithm that embeds (without crossings) a given planar graph on a linear
size integer grid.

Theorem 2.35 (de Fraysseix, Pach, Pollack [14]). Every planar graph on n > 3 vertices
has a plane straight-line drawing on the (2n− 3)× (n− 1) integer grid.

2.5.1 Canonical Orderings

The key concept behind the algorithm is the notion of a canonical ordering, which is a
vertex order that allows to construct a plane drawing in a natural (hence canonical) way.
Reading it backwards one may think of a shelling or peeling order that destructs the
graph vertex by vertex from the outside. A canonical ordering also provides a succinct
representation for the combinatorial embedding.

Definition 2.36. A plane graph is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. Let G be an internally triangulated plane
graph and C◦(G) its outer cycle. A permutation π = (v1, v2, . . . , vn) of V(G) is a
canonical ordering for G, if

(CO1) Gk is internally triangulated, for all k ∈ {3, . . . ,n};

(CO2) v1v2 is on the outer cycle C◦(Gk) of Gk, for all k ∈ {3, . . . ,n};

(CO3) vk+1 is located in the outer face of Gk and its neighbors (in Gk) appear
consecutively along C◦(Gk), for all k ∈ {3, . . . ,n− 1};

where Gk is the subgraph of G induced by v1, . . . , vk.
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Figure 2.18: An internally triangulated plane graph with a canonical ordering.

Figure 2.18 shows an example. Note that there are permutations that do not corre-
spond to a canonical order: for instance, when choosing the vertex 4 as the eighth vertex
instead of 8 in Figure 2.18b the graph G7 is not biconnected (1 is a cut-vertex).

Theorem 2.37. For every internally triangulated plane graph G and every edge {v1, v2}

on its outer face, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any order suffices and so
the statement holds. Hence consider an internally triangulated plane graph G = (V,E)
on n > 4 vertices. We claim that it is enough to select a vertex vn /∈ {v1, v2} on C◦(G)
that is not incident to a chord of C◦(G) and then apply induction on G \ {vn}.

We will show later that such a vertex vn always exists. First let us prove the claim.
We need to argue that if vn is selected as described

(i) the plane graph Gn−1 := G \ {vn} is internally triangulated,

(ii) the given edge {v1, v2} is on the outer face C◦(Gn−1) of Gn−1, and

(iii) we can extend the inductively obtained canonical ordering for Gn−1 with vn to
obtain a canonical ordering for G.

Property (ii) is an immediate consequence of vn /∈ {v1, v2}.
Regarding (iii) note that (CO1) and (CO2) for k = n hold by assumption. For (CO3)

recall that G is plane and vn ∈ C◦(G). Hence all neighbors of vn in G must appear on
C◦(Gn−1). Consider the circular sequence of neighbors around vn in G and break it into
a linear sequence u1, . . . ,um, for some m > 2, that starts and ends with the neighbors
of vn in C◦(G). As G is internally triangulated, each of the bounded faces spanned by
vn,ui,ui+1, for i ∈ {1, . . . ,m − 1}, is a triangle and hence {ui,ui+1} ∈ E. This implies
(CO3).

It remains to show (i). The way Gn−1 is obtained from G, every bounded face f
of Gn−1 also appears as a bounded face of G. As G is internally triangulated, f is
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a triangle. It remains to show that Gn−1 is biconnected. The outer cycle C◦(Gn−1)
of Gn−1 is obtained from C◦(G) by removing vn and replacing it with the (possibly
empty) sequence u2, . . . ,um−1. As vn is not incident to a chord of C◦(G) (and so neither
of u2, . . . ,um−1 appeared along C◦(G) already), the resulting sequence forms a cycle,
indeed. Add a new vertex v in the outer face of Gn−1 and connect v to every vertex
of C◦(Gn−1) to obtain a maximal planar graph H ⊃ Gn−1. By Theorem 2.27 H is 3-
connected and so Gn−1 is biconnected, as desired. This also completes the proof of the
claim.

Next let us show that we can always find vertex vn /∈ {v1, v2} on C◦(G) that is not
incident to a chord of C◦(G). If C◦(G) does not have any chord, this is obvious, because
every cycle has at least three vertices, one of which is neither v1 nor v2. So suppose that
C◦(G) has a chord c. The endpoints of c split C◦(G) into two paths, one of which does
not have v1 nor v2 as an internal vertex. Among all possible chords of C◦(G) select c
such that this path has minimal length. (It has always at least two edges, because there
is always at least one vertex “behind” a chord.) Then by definition of c this path is an
induced path in G and none of its (at least one) interior vertices is incident to a chord of
C◦(G), because such a chord would cross c. So we can select vn from these vertices. By
the way the path is selected with respect to c, this procedure does not select v1 nor v2.

Regarding the runtime bound, we maintain the following information for each vertex
v: whether it has been chosen already, whether it is on the outer face of the current
graph, and the number of incident chords with respect to the current outer cycle. Given
a combinatorial embedding of G, it is straighforward to initialize this information in
linear time. (Every edge is considered at most twice, once for each endpoint on the outer
face.) We also maintain an unsorted list of the eligible vertices, that is, those vertices
that are on the outer face and not incident to any chord. This list is straightforward to
maintain: Whenever a vertex information is updated, check before and after the update
whether it is eligible and correspondingly add it to or remove it from the list of eligible
vertices.

When removing a vertex, there are two cases: Either vn has two neighbors u1 and u2

only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus, the chord
count for u1 and u2 has to be decremented by one. Otherwise, there arem > 3 neighbors
u1, . . . ,nm (Figure 2.19b) and (1) all vertices u2, . . . ,um−1 are new on the outer cycle,
and (2) every edge incident to ui, for i ∈ {2, . . . ,m − 1}, and some other vertex on the
outer cycle other than ui−1 or ui+1 is a new chord (and the corresponding counters at
the endpoints have to by incremented by one).

During the course of the algorithm every vertex appears once as a new vertex on the
outer face. At this point all incident edges are examined. Overall, every edge is inspected
at most twice—once for each endpoint—which takes linear time by Corollary 2.5.

Using one of the linear time planarity testing algorithms, we can obtain a combina-
torial embedding for a given maximal planar graph G. As every maximal plane graph
is internally triangulated, we can then use Theorem 2.37 to provide us with a canonical
ordering for G, in overall linear time.
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Figure 2.19: Processing a vertex when computing a canonical ordering.

Corollary 2.38. Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time.

Exercise 2.39. (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

(b) Give a family of internally triangulated plane graphs Gn on n = 2k vertices
with at least (n/2)! canonical orderings.

Exercise 2.40. (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) on a grid of size (2n/3− 1)× (2n/3− 1) but
not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the embedding?

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.41 (Schnyder [26]). For every maximal planar graph G on at least three
vertices and every fixed face f of G, the multigraph obtained from G by doubling
the (three) edges of f can be partitioned into three spanning trees.
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Exercise 2.42. Prove Theorem 2.41. Hint: Take a canonical ordering and build one
tree by taking for every vertex vk the edge to its first neighbor on the outer cycle
C◦(Gk−1).

Of a similar flavor is the following open problem, for which only partial answers for
specific types of point sets are known [1, 4].

Problem 2.43 (In memoriam Ferran Hurtado (1951–2014)).
Can every complete geometric graph on n = 2k vertices (the complete straight line graph
on a set of n points in general position) be partitioned into k plane spanning trees?

2.5.2 The Shift-Algorithm

Let (v1, . . . , vn) be a canonical ordering. The general plan is to construct an embedding
by inserting vertices in this order, starting from the triangle P(v1) = (0, 0), P(v3) = (1, 1),
P(v2) = (2, 0); see Figure 2.20.

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

Figure 2.20: Initialization of the shift algorithm.

At each step, some vertices will be shifted to the right, making room for the edges to
the freshly inserted vertex. For each vertex vi already embedded, maintain a set L(vi)
of vertices that move rigidly together with vi. Initially L(vi) = {vi}, for 1 6 i 6 3.

Ensure that the following invariants hold after Step k (that is, after vk has been
inserted):

(i) P(v1) = (0, 0), P(v2) = (2k− 4, 0);

(ii) The x-coordinates of the points on C◦(Gk) = (w1, . . . ,wt) are strictly increasing
(in this order)4;

(iii) each edge of C◦(Gk) is drawn as a straight-line segment with slope ±1.

Clearly these invariants hold for G3, embedded as described above. Invariant (i) implies
that after Step n we have P(v2) = (2n − 4, 0), while (iii) implies that the Manhattan
distance5 between any two points on C◦(Gk) is even.

4The notation is a bit sloppy here because both t and the wi in general depend on k. So in principle
we should write wk

i instead of wi. But as the k would just make a constant appearance throughout, we
omit it to avoid index clutter.

5The Manhattan distance of two points (x1,y1) and (x2,y2) is |x2 − x1|+ |y2 − y1|.
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Idea: put vk+1 at µ(wp,wq), where wp, . . . ,wq are its neighbors on C◦(Gk) (recall that
they appear consecutively along C◦(Gk) by definition of a canonical ordering), where

µ((xp,yp), (xq,yq)) =
1
2
(xp − yp + xq + yq,−xp + yp + xq + yq)

is the point of intersection between the line `1 : y = x − xp + yp of slope 1 through
wp = (xp,yp) and the line `2 : y = xq − x+ yq of slope −1 through wq = (xq,yq).

Proposition 2.44. If the Manhattan distance between wp and wq is even, then µ(wp,wq)
is on the integer grid.

Proof. By Invariant (ii) we know that xp < xq. Suppose without loss of generality
that yp 6 yq. The Manhattan distance d of wp and wq is xq − xp + yq − yp, which by
assumption is an even number. Adding the even number 2xp to d yields the even number
xq + xp + yq − yp, half of which is the x-coordinate of µ((xp,yp), (xq,yq)). Adding the
even number 2yp to d yields the even number xq − xp + yq + yp, half of which is the
y-coordinate of µ((xp,yp), (xq,yq)).

After Step n we have P(vn) = (n− 2,n− 2), because vn is a neighbor of both v1 and
v2. However, P(vk+1) may not “see” all of wp, . . . ,wq, in case that the slope of wpwp+1

is 1 and/or the slope of wq−1wq is −1 (Figure 2.21).

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.21: (a) The new vertex vk+1 is adjacent to all of wp, . . . ,wq. If we place
vk+1 at µ(wp,wq), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq−1 lies on the line of slope −1
through wq; (b) shifting wp+1, . . . ,wq−1 by one and wq, . . . ,wt by two
units to the right solves the problem.

In order to resolve these problems we shift some points around so that after the shift
wp+1 does not lie on the line of slope 1 through wp and wq−1 does not lie on the line of
slope −1 through wq. The process of inserting vk+1 then looks as follows.

1. Shift
⋃q−1

i=p+1 L(wi) to the right by one unit.

2. Shift
⋃t

i=q L(wi) to the right by two units.

3. P(vk+1) := µ(wp,wq).

41



Chapter 2. Plane Embeddings Geometry: C&A 2017

4. L(vk+1) := {vk+1} ∪
⋃q−1

i=p+1 L(wi).

Observe that the Manhattan distance betweenwp andwq remains even, because the shift
increases their x-difference by two and leaves the y-coordinates unchanged. Therefore
by Proposition 2.44 the vertex vk+1 is embedded on the integer grid.

The slopes of the edges wpwp+1 and wq−1wq (might be just a single edge, in case
that p+1 = q) become < 1 in absolute value, whereas the slopes of all other edges along
the outer cycle remain ±1. As all edges from vk+1 to wp+1, . . . ,wq−1 have slope > 1 in
absolute value, and the edges vk+1wp and vk+1wq have slope ±1, each edge vk+1wi, for
i ∈ {p, . . . ,q} intersects the outer cycle in exactly one point, which is wi. In other words,
adding all edges from vk+1 to its neighbors in Gk as straight-line segments results in a
plane drawing.

Next we argue that the invariants (i)–(iii) are maintained. For (i) note that we start
shifting with wp+1 only so that even in case that v1 is a neighbor of vk+1, it is never
shifted. On the other hand, v2 is always shifted by two, because we shift every vertex
starting from (and including) wq. Clearly both the shifts and the insertion of vk+1

maintain the strict order along the outer cycle, and so (ii) continues to hold. Finally,
regarding (iii) note that the edges wpwp+1 and wq−1wq (possibly this is just a single
edge) are the only edges on the outer cycle whose slope is changed by the shift. But these
edges do not appear on C◦(Gk+1) anymore. The two edges vk+1wp and vk+1wq incident
to the new vertex vk+1 that appear on C◦(Gk+1) have slope 1 and −1, respectively. So
all of (i)–(iii) are invariants of the algorithm, indeed.

So far we have argued about the shift with respect to vertices on the outer cycle of
Gk only. To complete the proof of Theorem 2.35 it remains to show that the drawing
remains plane under shifts also in its interior part.

Lemma 2.45. Let Gk, k > 3, be straight-line grid embedded as described, C◦(Gk) =
(w1, . . . ,wt), and let δ1 6 . . . 6 δt be non-negative integers. If for each i, we shift
L(wi) by δi to the right, then the resulting straight-line drawing is plane.

Proof. Induction on k. For G3 this is obvious. Let vk = w`, for some 1 < ` < t.
Construct a delta sequence ∆ for Gk−1 as follows. If vk has only two neighbors in Gk,
then C◦(Gk−1) = (w1, . . . ,w`−1,w`+1, . . . ,wt) and we set ∆ = δ1, . . . , δ`−1, δ`+1, . . . , δt.
Otherwise, C◦(Gk−1) = (w1, . . . ,w`−1 = u1, . . . ,um = w`+1, . . . ,wt), where u1, . . . ,um

are the m > 3 neighbors of vk in Gk. In this case we set

∆ = δ1, . . . , δ`−1, δ`, . . . , δ`︸ ︷︷ ︸
m−2 times

, δ`+1, . . . , δt .

Clearly, ∆ is monotonely increasing and by the inductive assumption a correspondingly
shifted drawing of Gk−1 is plane. When adding vk and its incident edges back, the
drawing remains plane: All vertices u2, . . . ,um−1 (possibly none) move rigidly with (by
exactly the same amount as) vk by construction. Stretching the edges of the chain
w`−1,w`,w`+1 by moving w`−1 to the left and/or w`+1 to the right cannot create any
crossings.
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Linear time. The challenge in implementing the shift algorithm efficiently lies in the
eponymous shift operations, which modify the x-coordinates of potentially many ver-
tices. In fact, it is not hard to see that a naive implementation—which keeps track
of all coordinates explicitly—may use quadratic time. De Fraysseix et al. described an
implementation of the shift algorithm that uses O(n logn) time. Then Chrobak and
Payne [10] observed how to improve the runtime to linear, using the following ideas.

Recall that P(vk+1) = (xk+1,yk+1), where

xk+1 =
1
2
(xp − yp + xq + yq) and

yk+1 =
1
2
(−xp + yp + xq + yq) =

1
2
((xq − xp) + yp + yq) . (2.46)

Thus,

xk+1 − xp =
1
2
((xq − xp) + yq − yp) . (2.47)

In other words, we need the y-coordinates of wp and wq together with the relative x-
position (offset) of wp and wq only to determine the y-coordinate of vk+1 and its offset
to wp.

Maintain the outer cycle as a rooted binary tree T , with root v1. For each node v of
T , the left child is the first vertex covered by insertion of v (if any), that is, wp+1 in
the terminology from above (if p+ 1 6= q), whereas the right child of v is the next node
along the outer cycle (if any; either along the current outer cycle or along the one at the
point where both points were covered together). See Figure 2.22 for an example.

(a)

vk+1

(b)

Figure 2.22: Maintaining the binary tree representation when inserting a new vertex
vk+1. Red (dashed) arrows point to left children, blue (solid) arrows
point to right children.

At each node v of T we also store its x-offset dx(v) with respect to the parent node.
For the root v1 of the tree set dx(v1) = 0. In this way, a whole subtree (and, thus, a
whole set L(·)) can be shifted by changing a single offset entry at its root.
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Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =
left(v2) = left(v3) = 0, right(v1) = v3, right(v2) = 0, and right(v3) = v2.

Inserting a vertex vk+1 works as follows. As before, let w1, . . . ,wt denote the vertices
on the outer cycle C◦(Gk) and wp, . . . ,wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (This implements the shift.)

2. Compute ∆pq =
∑q

i=p+1 dx(wi). (This is the total offset between wp and wq.)

3. Set dx(vk)← 1
2(∆pq+y(wq)−y(wp)) and y(vk)← 1

2(∆pq+y(wq)+y(wp)). (This
is exactly what we derived in (2.46) and (2.47).)

4. Set right(wp)← vk and right(vk)← wq. (Update the current outer cycle.)

5. If p + 1 = q, then set left(vk)← 0; else set left(vk)← wp+1 and right(wq−1)← 0.
(Update L(vk+1), the part that is covered by insertion of vk+1.)

6. Set dx(wq)← ∆pq − dx(vk) and—unless p + 1 = q—set dx(wp+1)← dx(wp+1) −
dx(vk). (Update the offsets according to the changes in the previous two steps.)

Observe that the only step that possibly cannot be executed in constant time is Step 2.
But all vertices but the last vertex wq for which we sum the offsets are covered by the
insertion of vk+1. As every vertex can be covered at most once, the overall complexity
of this step during the algorithm is linear. Therefore, this first phase of the algorithm
can be completed in linear time.

In a second phase, the final x-coordinates can be computed from the offsets by a
single recursive pre-order traversal of the tree. The (pseudo–)code given below is to be
called with the root vertex v1 and an offset of zero. Clearly this yields a linear time
algorithm overall.

compute_coordinate(Vertex v, Offset d) {
if (v == 0) return;
x(v) = dx(v) + d;
compute_coordinate(left(v), x(v));
compute_coordinate(right(v), x(v));

}

2.5.3 Remarks and Open Problems

From a geometric complexity point of view, Theorem 2.35 provides very good news
for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler’s Formular tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where n
is the number of vertices.
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Now the shift algorithm tells us that for any planar graph we can even find a geometric
plane (straight-line) representation using O(n) space. In addition to the combinatorial
information, we only have to store 2n numbers from the range {0, 1, . . . , 2n− 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each address in memory contains a word of b
bits, which means that it can be used to represent any integer from {0, . . . , 2b − 1}. One
also assumes that b is sufficiently large, for instance, in our case b > logn.

There are also different models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . ,n}.

Edge lengths. Theorem 2.35 shows that planar graphs admit a plane straight-line drawing
where all vertices have integer coordinates. It is an open problem whether a similar
statement can be made for edge lengths.

Problem 2.48 (Harborth’s Conjecture [16]). Every planar graph admits a plane straight-
line drawing where all Euclidean edge lengths are integral.

Without the planarity restriction such a drawing is possible because for every n ∈ N
one can find a set of n points in the plane, not all collinear, such that their distances are
all integral. In fact, such a set of points can be constructed to lie on a circle of integral
radius [2]. When mapping the vertices of Kn onto such a point set, all edge lengths are
integral. In the same paper it is also shown that there exists no infinite set of points
in the plane so that all distances are integral, unless all of these points are collinear.
Unfortunately, collinear point sets are not very useful for drawing graphs. The existence
of a dense subset of the plane where all distances are rational would resolve Harborth’s
Conjecture. However, it is not known whether such a set exists, and in fact the suspected
answer is “no”.

Problem 2.49 (Erdős–Ulam Conjecture [11]). There is no dense set of points in the plane
whose Euclidean distances are all rational.

Generalizing the Fáry-Wagner Theorem. As discussed above, not every planar graph on n
vertices admits a plane straight-line embedding on every set of n points. But Theo-
rem 2.32 states that for every planar graph G on n vertices there exists a set P of n
points in the plane so that G admits a plane straight-line embedding on P (that is, so
that the vertices of G are mapped bijectively to the points in P). It is an open problem
whether this statement can be generalized to hold for several graphs, in the following
sense.

Problem 2.50. What is the largest number k ∈ N for which the following statement
holds? For every collection of k planar graphs G1, . . . ,Gk on n vertices each, there exists
a set P of n points so that Gi admits a plane straight-line embedding on P, for every
i ∈ {1, . . . ,k}.
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By Theorem 2.32 we know that the statement holds for k = 1. Already for k = 2
it is not known whether the statement holds. However, it is known that k is finite.
Specifically, there exists a collection of 7, 393 planar graphs on 35 vertices each so that
for every set P of 35 points in the plane at least one of these graphs does not admit a
plane straight-line embedding on P [7]. Therefore we have k 6 7392.

Questions

1. What is an embedding? What is a planar/plane graph? Give the definitions
and explain the difference between planar and plane.

2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler’s formula and derive your answers from it.

3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated efficiently? Ex-
plain what it is, including the difference between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.26.

5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial plane embedding? Give
the definitions, explain and prove Whitney’s Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one find a canonical ordering efficiently? Give the
definition. State and prove Theorem 2.37.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.35.
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